Show simple item record

dc.creatorZavišova, Vlasta
dc.creatorKoneracka, Martina
dc.creatorGabelova, Alena
dc.creatorSvitkova, Barbora
dc.creatorUrsinyova, Monika
dc.creatorKubovčikova, Martina
dc.creatorAntal, Iryna
dc.creatorKhmara, Iryna
dc.creatorJurikova, Alena
dc.creatorMolčan, Matuš
dc.creatorOgnjanović, Miloš
dc.creatorAntić, Bratislav
dc.creatorKopčansky, Peter
dc.date.accessioned2018-10-31T10:53:31Z
dc.date.available2018-10-31T10:53:31Z
dc.date.issued2019
dc.identifier.issn0304-8853
dc.identifier.urihttps://linkinghub.elsevier.com/retrieve/pii/S0304885318320183
dc.identifier.urihttps://vinar.vin.bg.ac.rs/handle/123456789/7906
dc.description.abstractMagnetic iron oxide nanoparticles (MNPs) are one of the most promising types of nanoparticles for biomedical applications, primarily in the context of nanomedicine-based diagnostics and therapy. They are used as contrast agents in magnetic resonance imaging and magnetite cell labelling. Furthermore, they are promising heating mediator in magnetic hyperthermia-based therapy, and can serve as nanocarriers in targeted gene and drug delivery as well. In biomedical applications, coating plays an important role in nanoparticle dispersion stability and biocompatibility. However, the impact of nanoparticle surface chemistry on cell uptake and proliferation has not been sufficiently investigated. The objective of this study is to prepare magnetic nanoparticles with inner magnetite core and hydrophilic outer shell of surfactant, protein and polymers that are commonly used in biomedical research. MNPs were characterized in-depth by various physicochemical methods. Magnetic hyperthermia, applied to find out the influence of MNPs coating on heating characteristics of the samples, did not show any correlation between layer thickness and specific adsorption rate. To evaluate the impact of surface chemistry on cell proliferation and internalization, the human lung adenocarcinoma epithelial (A549) cells were utilized. Substantial differences were determined in the amount of internalized MNPs and cell viability in dependence on surface coating. Our results indicate that the surface chemistry not only protects particles from agglomeration but also affect the interaction between cell and MNPs. © 2018 Elsevier B.V.en
dc.relationSlovak Research and Development Agency (APVV-14-0120)
dc.relationSlovak Research and Development Agency (APVV-14-0932)
dc.relationSlovak Research and Development Agency (APVV-15-0453)
dc.relationScientific Grant Agency (2/0056/17)
dc.relationScientific Grant Agency (2/0113/15)
dc.relationScientific Grant Agency (2/0016/17)
dc.relationScientific Grant Agency (2/0141/16)
dc.relationPROMATECH (ITMS No. 26220220186)
dc.relationCenter of excellence of environmental health (ITMS No. 26240120033)
dc.relationH2020 (H2020/2014-2020) funding under Grant agreement 685817 – HISENTS
dc.relationEEA FM and the NFM (Project SK0020)
dc.relationCOST action TD1402 (RADIOMAG)
dc.relationinfo:eu-repo/grantAgreement/EC/FP7/621375/EU//
dc.rightsrestrictedAccess
dc.sourceJournal of Magnetism and Magnetic Materials
dc.subjectMagnetic nanoparticlesen
dc.subjectMagnetic fluiden
dc.subjectMagnetic hyperthermiaen
dc.subjectCytotoxicityen
dc.subjectCell uptakeen
dc.titleEffect of magnetic nanoparticles coating on cell proliferation and uptakeen
dc.typearticleen
dc.rights.licenseARR
dcterms.abstractAнтал, Ирyна; Огњановић, Милош; Aнтић, Братислав; Завишова, Власта; Конерацка, Мартина; Габелова, Aлена; Свиткова, Барбора; Урсинyова, Моника; Кубовчикова, Мартина; Кхмара, Ирyна; Јурикова, Aлена; Молчан, Матуш; Копчанскy, Петер;
dc.rights.holder© 2018 Elsevier B.V.
dc.citation.volume472
dc.citation.spage66
dc.citation.epage73
dc.identifier.wos000449681300012
dc.identifier.doi10.1016/j.jmmm.2018.09.116
dc.citation.rankM22
dc.type.versionpublishedVersion
dc.identifier.scopus2-s2.0-85054580890


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record