ВинаР - Репозиторијум Института за нуклеарне науке Винча
    • English
    • Српски
    • Српски (Serbia)
  • Српски (ћирилица) 
    • Енглески
    • Српски (ћирилица)
    • Српски (латиница)
  • Пријава
Преглед записа 
  •   ВинаР
  • Vinča
  • Radovi istraživača
  • Преглед записа
  •   ВинаР
  • Vinča
  • Radovi istraživača
  • Преглед записа
JavaScript is disabled for your browser. Some features of this site may not work without it.

Impact- and Thermal-Resistant Epoxy Resin Toughened with Acacia Honey

Thumbnail
2023
Преузимање 🢃
Main article [PDF] (3.813Mb)
Аутори
Stajčić, Ivana
Veljković, Filip
Petrović, Miloš
Veličković, Suzana
Radojević, Vesna
Vlahović, Branislav
Stajčić, Aleksandar
Чланак у часопису (Објављена верзија)
Метаподаци
Приказ свих података о документу
Апстракт
High performance polymers with bio-based modifiers are promising materials in terms of applications and environmental impact. In this work, raw acacia honey was used as a bio-modifier for epoxy resin, as a rich source of functional groups. The addition of honey resulted in the formation of highly stable structures that were observed in scanning electron microscopy images as separate phases at the fracture surface, which were involved in the toughening of the resin. Structural changes were investigated, revealing the formation of a new aldehyde carbonyl group. Thermal analysis confirmed the formation of products that were stable up to 600 °C, with a glass transition temperature of 228 °C. An energy-controlled impact test was performed to compare the absorbed impact energy of bio-modified epoxy containing different amounts of honey with unmodified epoxy resin. The results showed that bio-modified epoxy resin with 3 wt% of acacia honey could withstand several impacts with full recovery, w...hile unmodified epoxy resin broke at first impact. The absorbed energy at first impact was 2.5 times higher for bio-modified epoxy resin than it was for unmodified epoxy resin. In this manner, by using simple preparation and a raw material that is abundant in nature, a novel epoxy with high thermal and impact resistance was obtained, opening a path for further research in this field.

Кључне речи:
acacia honey / bio-modifier / epoxy resin / impact-resistant
Извор:
Polymers, 2023, 15, 10, 2261-
Финансирање / пројекти:
  • Министарство науке, технолошког развоја и иновација Републике Србије, институционално финансирање - 200017 (Универзитет у Београду, Институт за нуклеарне науке Винча, Београд-Винча) (RS-MESTD-inst-2020-200017)
  • Министарство науке, технолошког развоја и иновација Републике Србије, институционално финансирање - 200026 (Универзитет у Београду, Институт за хемију, технологију и металургију - ИХТМ) (RS-MESTD-inst-2020-200026)
  • North Carolina Central University, USA
  • NSF DMR EiR 2101041
  • NSF DMR PREM 2122044
  • DOE/NNSA NA0003979

DOI: 10.3390/polym15102261

ISSN: 2073-4360

PubMed: 37242836

WoS: 000997008400001

Scopus: 2-s2.0-85160653492
[ Google Scholar ]
7
7
URI
https://vinar.vin.bg.ac.rs/handle/123456789/11093
Колекције
  • 050 - Laboratorija za fizičku hemiju
  • Radovi istraživača
Институција/група
Vinča
TY  - JOUR
AU  - Stajčić, Ivana
AU  - Veljković, Filip
AU  - Petrović, Miloš
AU  - Veličković, Suzana
AU  - Radojević, Vesna
AU  - Vlahović, Branislav
AU  - Stajčić, Aleksandar
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11093
AB  - High performance polymers with bio-based modifiers are promising materials in terms of applications and environmental impact. In this work, raw acacia honey was used as a bio-modifier for epoxy resin, as a rich source of functional groups. The addition of honey resulted in the formation of highly stable structures that were observed in scanning electron microscopy images as separate phases at the fracture surface, which were involved in the toughening of the resin. Structural changes were investigated, revealing the formation of a new aldehyde carbonyl group. Thermal analysis confirmed the formation of products that were stable up to 600 °C, with a glass transition temperature of 228 °C. An energy-controlled impact test was performed to compare the absorbed impact energy of bio-modified epoxy containing different amounts of honey with unmodified epoxy resin. The results showed that bio-modified epoxy resin with 3 wt% of acacia honey could withstand several impacts with full recovery, while unmodified epoxy resin broke at first impact. The absorbed energy at first impact was 2.5 times higher for bio-modified epoxy resin than it was for unmodified epoxy resin. In this manner, by using simple preparation and a raw material that is abundant in nature, a novel epoxy with high thermal and impact resistance was obtained, opening a path for further research in this field.
T2  - Polymers
T1  - Impact- and Thermal-Resistant Epoxy Resin Toughened with Acacia Honey
VL  - 15
IS  - 10
SP  - 2261
DO  - 10.3390/polym15102261
ER  - 
@article{
author = "Stajčić, Ivana and Veljković, Filip and Petrović, Miloš and Veličković, Suzana and Radojević, Vesna and Vlahović, Branislav and Stajčić, Aleksandar",
year = "2023",
abstract = "High performance polymers with bio-based modifiers are promising materials in terms of applications and environmental impact. In this work, raw acacia honey was used as a bio-modifier for epoxy resin, as a rich source of functional groups. The addition of honey resulted in the formation of highly stable structures that were observed in scanning electron microscopy images as separate phases at the fracture surface, which were involved in the toughening of the resin. Structural changes were investigated, revealing the formation of a new aldehyde carbonyl group. Thermal analysis confirmed the formation of products that were stable up to 600 °C, with a glass transition temperature of 228 °C. An energy-controlled impact test was performed to compare the absorbed impact energy of bio-modified epoxy containing different amounts of honey with unmodified epoxy resin. The results showed that bio-modified epoxy resin with 3 wt% of acacia honey could withstand several impacts with full recovery, while unmodified epoxy resin broke at first impact. The absorbed energy at first impact was 2.5 times higher for bio-modified epoxy resin than it was for unmodified epoxy resin. In this manner, by using simple preparation and a raw material that is abundant in nature, a novel epoxy with high thermal and impact resistance was obtained, opening a path for further research in this field.",
journal = "Polymers",
title = "Impact- and Thermal-Resistant Epoxy Resin Toughened with Acacia Honey",
volume = "15",
number = "10",
pages = "2261",
doi = "10.3390/polym15102261"
}
Stajčić, I., Veljković, F., Petrović, M., Veličković, S., Radojević, V., Vlahović, B.,& Stajčić, A.. (2023). Impact- and Thermal-Resistant Epoxy Resin Toughened with Acacia Honey. in Polymers, 15(10), 2261.
https://doi.org/10.3390/polym15102261
Stajčić I, Veljković F, Petrović M, Veličković S, Radojević V, Vlahović B, Stajčić A. Impact- and Thermal-Resistant Epoxy Resin Toughened with Acacia Honey. in Polymers. 2023;15(10):2261.
doi:10.3390/polym15102261 .
Stajčić, Ivana, Veljković, Filip, Petrović, Miloš, Veličković, Suzana, Radojević, Vesna, Vlahović, Branislav, Stajčić, Aleksandar, "Impact- and Thermal-Resistant Epoxy Resin Toughened with Acacia Honey" in Polymers, 15, no. 10 (2023):2261,
https://doi.org/10.3390/polym15102261 . .

DSpace software copyright © 2002-2015  DuraSpace
О репозиторијуму ВинаР | Пошаљите запажања

re3dataOpenAIRERCUB
 

 

Комплетан репозиторијумГрупеАуториНасловиТемеОва институцијаАуториНасловиТеме

Статистика

Преглед статистика

DSpace software copyright © 2002-2015  DuraSpace
О репозиторијуму ВинаР | Пошаљите запажања

re3dataOpenAIRERCUB