Prikaz osnovnih podataka o dokumentu

dc.contributorCAID Predictors
dc.contributorDisProt Curators
dc.creatorNecci, Marco
dc.creatorPiovesan, Damiano
dc.creatorTosatto, Silvio C. E.
dc.creatorDavidović, Radoslav S.
dc.creatorVeljković, Nevena V.
dc.date.accessioned2021-10-14T07:18:11Z
dc.date.available2021-10-14T07:18:11Z
dc.date.issued2021
dc.identifier.issn1548-7091
dc.identifier.urihttps://vinar.vin.bg.ac.rs/handle/123456789/9698
dc.description.abstractIntrinsically disordered proteins, defying the traditional protein structure–function paradigm, are a challenge to study experimentally. Because a large part of our knowledge rests on computational predictions, it is crucial that their accuracy is high. The Critical Assessment of protein Intrinsic Disorder prediction (CAID) experiment was established as a community-based blind test to determine the state of the art in prediction of intrinsically disordered regions and the subset of residues involved in binding. A total of 43 methods were evaluated on a dataset of 646 proteins from DisProt. The best methods use deep learning techniques and notably outperform physicochemical methods. The top disorder predictor has F max = 0.483 on the full dataset and F max = 0.792 following filtering out of bona fide structured regions. Disordered binding regions remain hard to predict, with F max = 0.231. Interestingly, computing times among methods can vary by up to four orders of magnitude.
dc.language.isoen
dc.relationNational Science Foundation (NSF) [1617369]
dc.relationNatural Sciences and Engineering Research Council of Canada [298328]
dc.relationTianjin Municipal Science and Technology Commission [13ZCZDGX01099]
dc.relationNational Natural Science Foundation of China [31970649]
dc.relationNational Natural Science Foundation of China [11701296]
dc.relationNatural Science Foundation of Tianjin [18JCYBJC24900]
dc.relationJapan Agency for Medical Research and Development [16cm0106320h0001]
dc.relationAustralian Research Council [DP180102060]
dc.relationResearch Foundation Flanders [G.0328.16 N]
dc.relationAgence Nationale de la Recherche [ANR-14-CE10-0021]
dc.relationAgence Nationale de la Recherche [ANR-17-CE12-0016]
dc.relationHungarian Ministry for Innovation and Technology ELTE Thematic Excellence Programme [ED-18-1-2019-0030]
dc.relationHungarian Academy of Sciences 'Lendulet' grant [LP2014-18]
dc.relationHungarian Scientific Research Fund [K124670]
dc.relationHungarian Scientific Research Fund [K131702]
dc.relationEuropean Union's Horizon 2020 research and innovation programme [778247]. Funding for open access charge: European Union's Horizon 2020 research and innovation programme [778247]
dc.relationItalian Ministry of University and Research - PRIN 2017 [2017483NH8]
dc.relationELIXIR
dc.rightsopenAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceNature Methods
dc.titleCritical assessment of protein intrinsic disorder predictionen
dc.typearticleen
dc.rights.licenseBY
dcterms.abstractДавидовић, Радослав С.; Вељковић, Невена В.; Нецци, Марцо; Пиовесан, Дамиано; Тосатто, Силвио Ц. Е.;
dc.rights.holder© 2021 The Author(s), under exclusive licence to Springer Nature America, Inc.
dc.citation.volume18
dc.citation.issue5
dc.citation.spage472
dc.citation.epage481
dc.identifier.wos000641237500004
dc.identifier.doi10.1038/s41592-021-01117-3
dc.citation.rankM21p
dc.identifier.pmid33875885
dc.type.versionpublishedVersion
dc.identifier.scopus2-s2.0-85104988931
dc.identifier.fulltexthttps://vinar.vin.bg.ac.rs/bitstream/id/24849/s41592-021-01117-3.pdf


Dokumenti

Thumbnail

Ovaj dokument se pojavljuje u sledećim kolekcijama

Prikaz osnovnih podataka o dokumentu