Prikaz osnovnih podataka o dokumentu
Critical assessment of protein intrinsic disorder prediction
| dc.contributor | CAID Predictors | |
| dc.contributor | DisProt Curators | |
| dc.creator | Necci, Marco | |
| dc.creator | Piovesan, Damiano | |
| dc.creator | Tosatto, Silvio C. E. | |
| dc.creator | Davidović, Radoslav S. | |
| dc.creator | Veljković, Nevena V. | |
| dc.date.accessioned | 2021-10-14T07:18:11Z | |
| dc.date.available | 2021-10-14T07:18:11Z | |
| dc.date.issued | 2021 | |
| dc.identifier.issn | 1548-7091 | |
| dc.identifier.uri | https://vinar.vin.bg.ac.rs/handle/123456789/9698 | |
| dc.description.abstract | Intrinsically disordered proteins, defying the traditional protein structure–function paradigm, are a challenge to study experimentally. Because a large part of our knowledge rests on computational predictions, it is crucial that their accuracy is high. The Critical Assessment of protein Intrinsic Disorder prediction (CAID) experiment was established as a community-based blind test to determine the state of the art in prediction of intrinsically disordered regions and the subset of residues involved in binding. A total of 43 methods were evaluated on a dataset of 646 proteins from DisProt. The best methods use deep learning techniques and notably outperform physicochemical methods. The top disorder predictor has F max = 0.483 on the full dataset and F max = 0.792 following filtering out of bona fide structured regions. Disordered binding regions remain hard to predict, with F max = 0.231. Interestingly, computing times among methods can vary by up to four orders of magnitude. | |
| dc.language.iso | en | |
| dc.relation | National Science Foundation (NSF) [1617369] | |
| dc.relation | Natural Sciences and Engineering Research Council of Canada [298328] | |
| dc.relation | Tianjin Municipal Science and Technology Commission [13ZCZDGX01099] | |
| dc.relation | National Natural Science Foundation of China [31970649] | |
| dc.relation | National Natural Science Foundation of China [11701296] | |
| dc.relation | Natural Science Foundation of Tianjin [18JCYBJC24900] | |
| dc.relation | Japan Agency for Medical Research and Development [16cm0106320h0001] | |
| dc.relation | Australian Research Council [DP180102060] | |
| dc.relation | Research Foundation Flanders [G.0328.16 N] | |
| dc.relation | Agence Nationale de la Recherche [ANR-14-CE10-0021] | |
| dc.relation | Agence Nationale de la Recherche [ANR-17-CE12-0016] | |
| dc.relation | Hungarian Ministry for Innovation and Technology ELTE Thematic Excellence Programme [ED-18-1-2019-0030] | |
| dc.relation | Hungarian Academy of Sciences 'Lendulet' grant [LP2014-18] | |
| dc.relation | Hungarian Scientific Research Fund [K124670] | |
| dc.relation | Hungarian Scientific Research Fund [K131702] | |
| dc.relation | European Union's Horizon 2020 research and innovation programme [778247]. Funding for open access charge: European Union's Horizon 2020 research and innovation programme [778247] | |
| dc.relation | Italian Ministry of University and Research - PRIN 2017 [2017483NH8] | |
| dc.relation | ELIXIR | |
| dc.rights | openAccess | |
| dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
| dc.source | Nature Methods | |
| dc.title | Critical assessment of protein intrinsic disorder prediction | en |
| dc.type | article | en |
| dc.rights.license | BY | |
| dcterms.abstract | Давидовић, Радослав С.; Вељковић, Невена В.; Нецци, Марцо; Пиовесан, Дамиано; Тосатто, Силвио Ц. Е.; | |
| dc.rights.holder | © 2021 The Author(s), under exclusive licence to Springer Nature America, Inc. | |
| dc.citation.volume | 18 | |
| dc.citation.issue | 5 | |
| dc.citation.spage | 472 | |
| dc.citation.epage | 481 | |
| dc.identifier.wos | 000641237500004 | |
| dc.identifier.doi | 10.1038/s41592-021-01117-3 | |
| dc.citation.rank | M21p | |
| dc.identifier.pmid | 33875885 | |
| dc.type.version | publishedVersion | |
| dc.identifier.scopus | 2-s2.0-85104988931 | |
| dc.identifier.fulltext | https://vinar.vin.bg.ac.rs/bitstream/id/24849/s41592-021-01117-3.pdf |
Dokumenti
Ovaj dokument se pojavljuje u sledećim kolekcijama
-
180 - Laboratorija za bioinformatiku i računarsku hemiju
Department of Bioinformatics and Computational Chemistry -
Radovi istraživača
Researchers' publications

