ВинаР - Репозиторијум Института за нуклеарне науке Винча
    • English
    • Српски
    • Српски (Serbia)
  • Српски (ћирилица) 
    • Енглески
    • Српски (ћирилица)
    • Српски (латиница)
  • Пријава
Преглед записа 
  •   ВинаР
  • Vinča
  • Radovi istraživača
  • Преглед записа
  •   ВинаР
  • Vinča
  • Radovi istraživača
  • Преглед записа
JavaScript is disabled for your browser. Some features of this site may not work without it.

Degradation Products, Mineralization, and Toxicity Assessment of Pesticides Malathion and Fenitrothion

Само за регистроване кориснике
2020
Аутори
Pergal, Marija V.
Kodranov, Igor D.
Pergal, Miodrag M.
Gašić, Uroš M.
Stanković, Dalibor M.
Petković, Branka B.
Manojlović, Dragan D.
Чланак у часопису (Објављена верзија)
Метаподаци
Приказ свих података о документу
Апстракт
The aim of this study was to investigate, analyze, and compare applied techniques suitable for achieving efficient removal of organophosphorus pesticides (OPPs) (malathion and fenitrothion) from aqueous solutions and analyze the degradation products and processes. Pesticide degradation efficiency (%) was monitored by high-performance liquid chromatography (HPLC) equipped with a photodiode array detector (DAD), while mineralization degree was determined by total organic carbon analysis (TOC). Daphnia magna was used for screening the environmental safety aspects of the degradation methods, i.e., for assessing the toxicity of solutions obtained after degradation. Additionally, a surface river water was utilized to examine the likely influence of organic matter on the pesticides’ degradation. Pesticide degradation products were identified using gas chromatography with a triple quadrupole mass detector (GC-MS/MS) as well as ultrahigh-performance liquid chromatography coupled with a linear i...on trap, Orbitrap mass spectrometer (UHPLC-LTQ Orbitrap MS), and a simple pesticide degradation mechanism is proposed. Removal of pesticides from water using chlorine dioxide was successful, resulting in high degradation efficiency (98% for malathion and 81% for fenitrothion). Partial mineralization was achieved, and Daphnia magna mortality decreased in the waters containing degradation products (compared with the parent pesticides), indicating that the solutions formed were less toxic than the parent pesticides. Lower degradation rates (80% for malathion and 72% for fenitrothion) in Sava River water were measured, indicating the influence of the organic matter contained in this naturally occurring surface water. The results prove that chlorine dioxide could be used as an agent for successful removal of these OPPs from water.

Кључне речи:
Degradation product and pathway / GC-MS/MS / LC-Orbitrap MS / Organophosphorus pesticides degradation / River water
Извор:
Water, Air, and Soil Pollution, 2020, 231, 8
Финансирање / пројекти:
  • Министарство науке, технолошког развоја и иновација Републике Србије, институционално финансирање - 200026 (Универзитет у Београду, Институт за хемију, технологију и металургију - ИХТМ) (RS-MESTD-inst-2020-200026)
  • Министарство науке, технолошког развоја и иновација Републике Србије, институционално финансирање - 200168 (Универзитет у Београду, Хемијски факултет) (RS-MESTD-inst-2020-200168)
  • info:eu-repo/grantAgreement/MESTD/inst-2020/200007/RS//" (RS-MESTD-inst-2020-200007)

DOI: 10.1007/s11270-020-04800-x

ISSN: 1573-2932

WoS: 000561055100002

Scopus: 2-s2.0-85089211652
[ Google Scholar ]
14
11
URI
https://vinar.vin.bg.ac.rs/handle/123456789/9112
Колекције
  • 070 - Laboratorija za radioizotope
  • Radovi istraživača
Институција/група
Vinča
TY  - JOUR
AU  - Pergal, Marija V.
AU  - Kodranov, Igor D.
AU  - Pergal, Miodrag M.
AU  - Gašić, Uroš M.
AU  - Stanković, Dalibor M.
AU  - Petković, Branka B.
AU  - Manojlović, Dragan D.
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9112
AB  - The aim of this study was to investigate, analyze, and compare applied techniques suitable for achieving efficient removal of organophosphorus pesticides (OPPs) (malathion and fenitrothion) from aqueous solutions and analyze the degradation products and processes. Pesticide degradation efficiency (%) was monitored by high-performance liquid chromatography (HPLC) equipped with a photodiode array detector (DAD), while mineralization degree was determined by total organic carbon analysis (TOC). Daphnia magna was used for screening the environmental safety aspects of the degradation methods, i.e., for assessing the toxicity of solutions obtained after degradation. Additionally, a surface river water was utilized to examine the likely influence of organic matter on the pesticides’ degradation. Pesticide degradation products were identified using gas chromatography with a triple quadrupole mass detector (GC-MS/MS) as well as ultrahigh-performance liquid chromatography coupled with a linear ion trap, Orbitrap mass spectrometer (UHPLC-LTQ Orbitrap MS), and a simple pesticide degradation mechanism is proposed. Removal of pesticides from water using chlorine dioxide was successful, resulting in high degradation efficiency (98% for malathion and 81% for fenitrothion). Partial mineralization was achieved, and Daphnia magna mortality decreased in the waters containing degradation products (compared with the parent pesticides), indicating that the solutions formed were less toxic than the parent pesticides. Lower degradation rates (80% for malathion and 72% for fenitrothion) in Sava River water were measured, indicating the influence of the organic matter contained in this naturally occurring surface water. The results prove that chlorine dioxide could be used as an agent for successful removal of these OPPs from water.
T2  - Water, Air, and Soil Pollution
T1  - Degradation Products, Mineralization, and Toxicity Assessment of Pesticides Malathion and Fenitrothion
VL  - 231
IS  - 8
DO  - 10.1007/s11270-020-04800-x
ER  - 
@article{
author = "Pergal, Marija V. and Kodranov, Igor D. and Pergal, Miodrag M. and Gašić, Uroš M. and Stanković, Dalibor M. and Petković, Branka B. and Manojlović, Dragan D.",
year = "2020",
abstract = "The aim of this study was to investigate, analyze, and compare applied techniques suitable for achieving efficient removal of organophosphorus pesticides (OPPs) (malathion and fenitrothion) from aqueous solutions and analyze the degradation products and processes. Pesticide degradation efficiency (%) was monitored by high-performance liquid chromatography (HPLC) equipped with a photodiode array detector (DAD), while mineralization degree was determined by total organic carbon analysis (TOC). Daphnia magna was used for screening the environmental safety aspects of the degradation methods, i.e., for assessing the toxicity of solutions obtained after degradation. Additionally, a surface river water was utilized to examine the likely influence of organic matter on the pesticides’ degradation. Pesticide degradation products were identified using gas chromatography with a triple quadrupole mass detector (GC-MS/MS) as well as ultrahigh-performance liquid chromatography coupled with a linear ion trap, Orbitrap mass spectrometer (UHPLC-LTQ Orbitrap MS), and a simple pesticide degradation mechanism is proposed. Removal of pesticides from water using chlorine dioxide was successful, resulting in high degradation efficiency (98% for malathion and 81% for fenitrothion). Partial mineralization was achieved, and Daphnia magna mortality decreased in the waters containing degradation products (compared with the parent pesticides), indicating that the solutions formed were less toxic than the parent pesticides. Lower degradation rates (80% for malathion and 72% for fenitrothion) in Sava River water were measured, indicating the influence of the organic matter contained in this naturally occurring surface water. The results prove that chlorine dioxide could be used as an agent for successful removal of these OPPs from water.",
journal = "Water, Air, and Soil Pollution",
title = "Degradation Products, Mineralization, and Toxicity Assessment of Pesticides Malathion and Fenitrothion",
volume = "231",
number = "8",
doi = "10.1007/s11270-020-04800-x"
}
Pergal, M. V., Kodranov, I. D., Pergal, M. M., Gašić, U. M., Stanković, D. M., Petković, B. B.,& Manojlović, D. D.. (2020). Degradation Products, Mineralization, and Toxicity Assessment of Pesticides Malathion and Fenitrothion. in Water, Air, and Soil Pollution, 231(8).
https://doi.org/10.1007/s11270-020-04800-x
Pergal MV, Kodranov ID, Pergal MM, Gašić UM, Stanković DM, Petković BB, Manojlović DD. Degradation Products, Mineralization, and Toxicity Assessment of Pesticides Malathion and Fenitrothion. in Water, Air, and Soil Pollution. 2020;231(8).
doi:10.1007/s11270-020-04800-x .
Pergal, Marija V., Kodranov, Igor D., Pergal, Miodrag M., Gašić, Uroš M., Stanković, Dalibor M., Petković, Branka B., Manojlović, Dragan D., "Degradation Products, Mineralization, and Toxicity Assessment of Pesticides Malathion and Fenitrothion" in Water, Air, and Soil Pollution, 231, no. 8 (2020),
https://doi.org/10.1007/s11270-020-04800-x . .

DSpace software copyright © 2002-2015  DuraSpace
О репозиторијуму ВинаР | Пошаљите запажања

re3dataOpenAIRERCUB
 

 

Комплетан репозиторијумГрупеАуториНасловиТемеОва институцијаАуториНасловиТеме

Статистика

Преглед статистика

DSpace software copyright © 2002-2015  DuraSpace
О репозиторијуму ВинаР | Пошаљите запажања

re3dataOpenAIRERCUB