ВинаР - Репозиторијум Института за нуклеарне науке Винча
    • English
    • Српски
    • Српски (Serbia)
  • Српски (ћирилица) 
    • Енглески
    • Српски (ћирилица)
    • Српски (латиница)
  • Пријава
Преглед записа 
  •   ВинаР
  • Vinča
  • Radovi istraživača
  • Преглед записа
  •   ВинаР
  • Vinča
  • Radovi istraživača
  • Преглед записа
JavaScript is disabled for your browser. Some features of this site may not work without it.

Production and characterization of biochar and modified biochars by carbonization process of bearberry (Arctostaphylos uva-ursi. L.): Adsorption capacities and kinetic studies of Pb2+, Cd2+ and rhodamine B removal from aqueous solutions

Само за регистроване кориснике
2025
Аутори
Pijović Radovanović, Milena
Zdolšek, Nikola
Brković, Snežana
Ječmenica Dučić, Marija
Vasić Anićijević, Dragana
Janković Častvan, Ivona
Pavićević, Vladimir
Janković, Bojan
Чланак у часопису (Објављена верзија)
Метаподаци
Приказ свих података о документу
Апстракт
In this work, Bearberry (Arctostaphylos uva-ursi L.) leaves and twigs were used as novel biomass source for production of biochar and modified biochars (manufacturing of microporous and mesoporous carbons by physical and chemical activations, using CO2 and H3PO4) via one-step carbonization (800 °C) with excellent physicochemical properties, for effective removal of Pb2+ and Cd2+ ions, and synthetic dye (Rhodamine B - RhB) from aqueous solutions. Results showed that carbonized (BL-C) and physically activated carbons (BL-CO2) as microporous adsorbents (specific surface areas 219.0 m2/g and 305.5 m2/g) show remarkable removal efficiency of Pb2+ (99.8 % and 99.9 %, for BL-C and BL-CO2), while these adsorbents showed moderate affinity for Cd2+ elimination (53.5 % and 48.5 %). BL-H3PO4 as mesoporous adsorbent with lower specific surface and larger pores (90.2 m2/g with Dmax = 33.6 nm), shows very good removal efficiency of PhB (~ 87 %). It was found that physical adsorption occurs during RhB... removal onto BL-H3PO4, where dominant mechanism represents film diffusion, with reduced boundary layer effect. Adsorption process takes place over π–π, hydrogen bonding and electrostatic interactions. Adsorption processes of Pb2+ and Cd2+ onto BL-CO2 and BL-C take place via physical and chemical adsorption, but with different type of mechanism, including combination of diffusion and chemisorption (increased effect of boundary layer) and intra-particle diffusion (greatly reduced boundary layer effect), respectively. A very interesting fact found in this study, is that metal oxide surfaces (as Cu2O, SiO2, ZnO present in activated carbons) exhibit an efficient binding towards cadmium, providing physisorption capability onto non-metallic graphene features.

Кључне речи:
Carbonization / Carbon adsorbents / Heavy metal ions / Dye adsorption / Diffusion/chemisorption / DFT calculations
Извор:
Diamond and Related Materials, 2025, 151, 111794-
Финансирање / пројекти:
  • Министарство науке, технолошког развоја и иновација Републике Србије, институционално финансирање - 200017 (Универзитет у Београду, Институт за нуклеарне науке Винча, Београд-Винча) (RS-MESTD-inst-2020-200017)
  • Министарство науке, технолошког развоја и иновација Републике Србије, институционално финансирање - 200135 (Универзитет у Београду, Технолошко-металуршки факултет) (RS-MESTD-inst-2020-200135)

DOI: 10.1016/j.diamond.2024.111794

ISSN: 0925-9635

WoS: 001365213200001

Scopus: 2-s2.0-85209660321
[ Google Scholar ]
2
2
URI
https://vinar.vin.bg.ac.rs/handle/123456789/14014
Колекције
  • Radovi istraživača
Институција/група
Vinča
TY  - JOUR
AU  - Pijović Radovanović, Milena
AU  - Zdolšek, Nikola
AU  - Brković, Snežana
AU  - Ječmenica Dučić, Marija
AU  - Vasić Anićijević, Dragana
AU  - Janković Častvan, Ivona
AU  - Pavićević, Vladimir
AU  - Janković, Bojan
PY  - 2025
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/14014
AB  - In this work, Bearberry (Arctostaphylos uva-ursi L.) leaves and twigs were used as novel biomass source for production of biochar and modified biochars (manufacturing of microporous and mesoporous carbons by physical and chemical activations, using CO2 and H3PO4) via one-step carbonization (800 °C) with excellent physicochemical properties, for effective removal of Pb2+ and Cd2+ ions, and synthetic dye (Rhodamine B - RhB) from aqueous solutions. Results showed that carbonized (BL-C) and physically activated carbons (BL-CO2) as microporous adsorbents (specific surface areas 219.0 m2/g and 305.5 m2/g) show remarkable removal efficiency of Pb2+ (99.8 % and 99.9 %, for BL-C and BL-CO2), while these adsorbents showed moderate affinity for Cd2+ elimination (53.5 % and 48.5 %). BL-H3PO4 as mesoporous adsorbent with lower specific surface and larger pores (90.2 m2/g with Dmax = 33.6 nm), shows very good removal efficiency of PhB (~ 87 %). It was found that physical adsorption occurs during RhB removal onto BL-H3PO4, where dominant mechanism represents film diffusion, with reduced boundary layer effect. Adsorption process takes place over π–π, hydrogen bonding and electrostatic interactions. Adsorption processes of Pb2+ and Cd2+ onto BL-CO2 and BL-C take place via physical and chemical adsorption, but with different type of mechanism, including combination of diffusion and chemisorption (increased effect of boundary layer) and intra-particle diffusion (greatly reduced boundary layer effect), respectively. A very interesting fact found in this study, is that metal oxide surfaces (as Cu2O, SiO2, ZnO present in activated carbons) exhibit an efficient binding towards cadmium, providing physisorption capability onto non-metallic graphene features.
T2  - Diamond and Related Materials
T1  - Production and characterization of biochar and modified biochars by carbonization process of bearberry (Arctostaphylos uva-ursi. L.): Adsorption capacities and kinetic studies of Pb2+, Cd2+ and rhodamine B removal from aqueous solutions
VL  - 151
SP  - 111794
DO  - 10.1016/j.diamond.2024.111794
ER  - 
@article{
author = "Pijović Radovanović, Milena and Zdolšek, Nikola and Brković, Snežana and Ječmenica Dučić, Marija and Vasić Anićijević, Dragana and Janković Častvan, Ivona and Pavićević, Vladimir and Janković, Bojan",
year = "2025",
abstract = "In this work, Bearberry (Arctostaphylos uva-ursi L.) leaves and twigs were used as novel biomass source for production of biochar and modified biochars (manufacturing of microporous and mesoporous carbons by physical and chemical activations, using CO2 and H3PO4) via one-step carbonization (800 °C) with excellent physicochemical properties, for effective removal of Pb2+ and Cd2+ ions, and synthetic dye (Rhodamine B - RhB) from aqueous solutions. Results showed that carbonized (BL-C) and physically activated carbons (BL-CO2) as microporous adsorbents (specific surface areas 219.0 m2/g and 305.5 m2/g) show remarkable removal efficiency of Pb2+ (99.8 % and 99.9 %, for BL-C and BL-CO2), while these adsorbents showed moderate affinity for Cd2+ elimination (53.5 % and 48.5 %). BL-H3PO4 as mesoporous adsorbent with lower specific surface and larger pores (90.2 m2/g with Dmax = 33.6 nm), shows very good removal efficiency of PhB (~ 87 %). It was found that physical adsorption occurs during RhB removal onto BL-H3PO4, where dominant mechanism represents film diffusion, with reduced boundary layer effect. Adsorption process takes place over π–π, hydrogen bonding and electrostatic interactions. Adsorption processes of Pb2+ and Cd2+ onto BL-CO2 and BL-C take place via physical and chemical adsorption, but with different type of mechanism, including combination of diffusion and chemisorption (increased effect of boundary layer) and intra-particle diffusion (greatly reduced boundary layer effect), respectively. A very interesting fact found in this study, is that metal oxide surfaces (as Cu2O, SiO2, ZnO present in activated carbons) exhibit an efficient binding towards cadmium, providing physisorption capability onto non-metallic graphene features.",
journal = "Diamond and Related Materials",
title = "Production and characterization of biochar and modified biochars by carbonization process of bearberry (Arctostaphylos uva-ursi. L.): Adsorption capacities and kinetic studies of Pb2+, Cd2+ and rhodamine B removal from aqueous solutions",
volume = "151",
pages = "111794",
doi = "10.1016/j.diamond.2024.111794"
}
Pijović Radovanović, M., Zdolšek, N., Brković, S., Ječmenica Dučić, M., Vasić Anićijević, D., Janković Častvan, I., Pavićević, V.,& Janković, B.. (2025). Production and characterization of biochar and modified biochars by carbonization process of bearberry (Arctostaphylos uva-ursi. L.): Adsorption capacities and kinetic studies of Pb2+, Cd2+ and rhodamine B removal from aqueous solutions. in Diamond and Related Materials, 151, 111794.
https://doi.org/10.1016/j.diamond.2024.111794
Pijović Radovanović M, Zdolšek N, Brković S, Ječmenica Dučić M, Vasić Anićijević D, Janković Častvan I, Pavićević V, Janković B. Production and characterization of biochar and modified biochars by carbonization process of bearberry (Arctostaphylos uva-ursi. L.): Adsorption capacities and kinetic studies of Pb2+, Cd2+ and rhodamine B removal from aqueous solutions. in Diamond and Related Materials. 2025;151:111794.
doi:10.1016/j.diamond.2024.111794 .
Pijović Radovanović, Milena, Zdolšek, Nikola, Brković, Snežana, Ječmenica Dučić, Marija, Vasić Anićijević, Dragana, Janković Častvan, Ivona, Pavićević, Vladimir, Janković, Bojan, "Production and characterization of biochar and modified biochars by carbonization process of bearberry (Arctostaphylos uva-ursi. L.): Adsorption capacities and kinetic studies of Pb2+, Cd2+ and rhodamine B removal from aqueous solutions" in Diamond and Related Materials, 151 (2025):111794,
https://doi.org/10.1016/j.diamond.2024.111794 . .

DSpace software copyright © 2002-2015  DuraSpace
О репозиторијуму ВинаР | Пошаљите запажања

re3dataOpenAIRERCUB
 

 

Комплетан репозиторијумГрупеАуториНасловиТемеОва институцијаАуториНасловиТеме

Статистика

Преглед статистика

DSpace software copyright © 2002-2015  DuraSpace
О репозиторијуму ВинаР | Пошаљите запажања

re3dataOpenAIRERCUB