ВинаР - Репозиторијум Института за нуклеарне науке Винча
    • English
    • Српски
    • Српски (Serbia)
  • Српски (ћирилица) 
    • Енглески
    • Српски (ћирилица)
    • Српски (латиница)
  • Пријава
Преглед записа 
  •   ВинаР
  • Vinča
  • Radovi istraživača
  • Преглед записа
  •   ВинаР
  • Vinča
  • Radovi istraživača
  • Преглед записа
JavaScript is disabled for your browser. Some features of this site may not work without it.

Photoplethysmogram as a source of biomarkers for AI-based diagnosis of heart failure

Thumbnail
2023
Преузимање 🢃
Conference object [PDF] (594.4Kb)
Аутори
Tadić, Predrag
Petrović, Jovana
Đorđević, Natalija
Ivanović, Marija
Lazović, Aleksandar
Vukčević, Vladan
Ristić, Arsen
Hadžievski, Ljupčo
Конференцијски прилог (Објављена верзија)
Метаподаци
Приказ свих података о документу
Апстракт
We present our progress on the “Multi-SENSor SysteM and ARTificial intelligence in service of heart failure diagnosis (SensSmart)” project, which was introduced at the last year’s edition of the Workshop [1]. The goal of the SensSmart project is to enable early diagnosis of heart failure, through the development of: 1) a multi-sensor polycardiograph apparatus (PCG) that produces simultaneous acquisition of the subject’s electrocardiogram (ECG), photoplethysmogram (PPG), heart sounds, and heart movements, and 2) AI-assisted analysis of the acquired signals. This presentation is going to focus on the acquisition and processing of PPG signals. PPG is obtained by using a pulse oximeter which illuminates the skin and measures the changes in light absorption, thereby enabling the detection of blood volume changes in the vessels. Our PCG apparatus measures the blood flow through the brachial, radial, and carotid arteries. During each heartbeat, the generated waveform typically exhibits severa...l characteristic points [2]. The magnitudes and time distances between these points are useful indicators of many cardiac conditions, including heart failure [3]. However, the inter-patient variability of the PPG waveform makes it challenging to derive simple rule-based diagnostic procedures. This has led many researchers to turn to statistical or machine learning methods for processing of PPG signals [4]. In this presentation, we give an overview of AI-based signal processing methods for PPG, and present some preliminary results and challenges in extracting features from real-world signals obtained using our PCG.

Извор:
16th Photonics Workshop : Book of abstracts, 2023, 24-24
Издавач:
  • Belgrade : Institute of Physics
Финансирање / пројекти:
  • Министарство науке, технолошког развоја и иновација Републике Србије, институционално финансирање - 200017 (Универзитет у Београду, Институт за нуклеарне науке Винча, Београд-Винча) (RS-MESTD-inst-2020-200017)
  • Министарство науке, технолошког развоја и иновација Републике Србије, институционално финансирање - 200103 (Универзитет у Београду, Електротехнички факултет) (RS-MESTD-inst-2020-200103)
  • 2023-07-17 SensSmart - Multi-SENSor SysteM and ARTificial intelligence in service of heart failure diagnosis (RS-ScienceFundRS-Ideje-7754338)
Напомена:
  • XVI Photonics Workshop : Book of abstracts; March 12-15, 2023; Kopaonik, Serbia

ISBN: 978-86-82441-59-5

[ Google Scholar ]
Handle
https://hdl.handle.net/21.15107/rcub_vinar_13044
URI
https://vinar.vin.bg.ac.rs/handle/123456789/13044
Колекције
  • Radovi istraživača
  • SensSmart
Институција/група
Vinča
TY  - CONF
AU  - Tadić, Predrag
AU  - Petrović, Jovana
AU  - Đorđević, Natalija
AU  - Ivanović, Marija
AU  - Lazović, Aleksandar
AU  - Vukčević, Vladan
AU  - Ristić, Arsen
AU  - Hadžievski, Ljupčo
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/13044
AB  - We present our progress on the “Multi-SENSor SysteM and ARTificial intelligence in service of heart failure diagnosis (SensSmart)” project, which was introduced at the last year’s edition of the Workshop [1]. The goal of the SensSmart project is to enable early diagnosis of heart failure, through the development of: 1) a multi-sensor polycardiograph apparatus (PCG) that produces simultaneous acquisition of the subject’s electrocardiogram (ECG), photoplethysmogram (PPG), heart sounds, and heart movements, and 2) AI-assisted analysis of the acquired signals. This presentation is going to focus on the acquisition and processing of PPG signals. PPG is obtained by using a pulse oximeter which illuminates the skin and measures the changes in light absorption, thereby enabling the detection of blood volume changes in the vessels. Our PCG apparatus measures the blood flow through the brachial, radial, and carotid arteries. During each heartbeat, the generated waveform typically exhibits several characteristic points [2]. The magnitudes and time distances between these points are useful indicators of many cardiac conditions, including heart failure [3]. However, the inter-patient variability of the PPG waveform makes it challenging to derive simple rule-based diagnostic procedures. This has led many researchers to turn to statistical or machine learning methods for processing of PPG signals [4].  In this presentation, we give an overview of AI-based signal processing methods for PPG, and present some preliminary results and challenges in extracting features from real-world signals obtained using our PCG.
PB  - Belgrade : Institute of Physics
C3  - 16th Photonics Workshop : Book of abstracts
T1  - Photoplethysmogram as a source of biomarkers  for AI-based diagnosis of heart failure
SP  - 24
EP  - 24
UR  - https://hdl.handle.net/21.15107/rcub_vinar_13044
ER  - 
@conference{
author = "Tadić, Predrag and Petrović, Jovana and Đorđević, Natalija and Ivanović, Marija and Lazović, Aleksandar and Vukčević, Vladan and Ristić, Arsen and Hadžievski, Ljupčo",
year = "2023",
abstract = "We present our progress on the “Multi-SENSor SysteM and ARTificial intelligence in service of heart failure diagnosis (SensSmart)” project, which was introduced at the last year’s edition of the Workshop [1]. The goal of the SensSmart project is to enable early diagnosis of heart failure, through the development of: 1) a multi-sensor polycardiograph apparatus (PCG) that produces simultaneous acquisition of the subject’s electrocardiogram (ECG), photoplethysmogram (PPG), heart sounds, and heart movements, and 2) AI-assisted analysis of the acquired signals. This presentation is going to focus on the acquisition and processing of PPG signals. PPG is obtained by using a pulse oximeter which illuminates the skin and measures the changes in light absorption, thereby enabling the detection of blood volume changes in the vessels. Our PCG apparatus measures the blood flow through the brachial, radial, and carotid arteries. During each heartbeat, the generated waveform typically exhibits several characteristic points [2]. The magnitudes and time distances between these points are useful indicators of many cardiac conditions, including heart failure [3]. However, the inter-patient variability of the PPG waveform makes it challenging to derive simple rule-based diagnostic procedures. This has led many researchers to turn to statistical or machine learning methods for processing of PPG signals [4].  In this presentation, we give an overview of AI-based signal processing methods for PPG, and present some preliminary results and challenges in extracting features from real-world signals obtained using our PCG.",
publisher = "Belgrade : Institute of Physics",
journal = "16th Photonics Workshop : Book of abstracts",
title = "Photoplethysmogram as a source of biomarkers  for AI-based diagnosis of heart failure",
pages = "24-24",
url = "https://hdl.handle.net/21.15107/rcub_vinar_13044"
}
Tadić, P., Petrović, J., Đorđević, N., Ivanović, M., Lazović, A., Vukčević, V., Ristić, A.,& Hadžievski, L.. (2023). Photoplethysmogram as a source of biomarkers  for AI-based diagnosis of heart failure. in 16th Photonics Workshop : Book of abstracts
Belgrade : Institute of Physics., 24-24.
https://hdl.handle.net/21.15107/rcub_vinar_13044
Tadić P, Petrović J, Đorđević N, Ivanović M, Lazović A, Vukčević V, Ristić A, Hadžievski L. Photoplethysmogram as a source of biomarkers  for AI-based diagnosis of heart failure. in 16th Photonics Workshop : Book of abstracts. 2023;:24-24.
https://hdl.handle.net/21.15107/rcub_vinar_13044 .
Tadić, Predrag, Petrović, Jovana, Đorđević, Natalija, Ivanović, Marija, Lazović, Aleksandar, Vukčević, Vladan, Ristić, Arsen, Hadžievski, Ljupčo, "Photoplethysmogram as a source of biomarkers  for AI-based diagnosis of heart failure" in 16th Photonics Workshop : Book of abstracts (2023):24-24,
https://hdl.handle.net/21.15107/rcub_vinar_13044 .

DSpace software copyright © 2002-2015  DuraSpace
О репозиторијуму ВинаР | Пошаљите запажања

re3dataOpenAIRERCUB
 

 

Комплетан репозиторијумГрупеАуториНасловиТемеОва институцијаАуториНасловиТеме

Статистика

Преглед статистика

DSpace software copyright © 2002-2015  DuraSpace
О репозиторијуму ВинаР | Пошаљите запажања

re3dataOpenAIRERCUB