ВинаР - Репозиторијум Института за нуклеарне науке Винча
    • English
    • Српски
    • Српски (Serbia)
  • Српски (ћирилица) 
    • Енглески
    • Српски (ћирилица)
    • Српски (латиница)
  • Пријава
Преглед записа 
  •   ВинаР
  • Vinča
  • Radovi istraživača
  • Преглед записа
  •   ВинаР
  • Vinča
  • Radovi istraživača
  • Преглед записа
JavaScript is disabled for your browser. Some features of this site may not work without it.

Application of Viscose-Based Porous Carbon Fibers in Food Processing—Malathion and Chlorpyrifos Removal

Thumbnail
2023
Преузимање 🢃
Main article [PDF] (5.805Mb)
Аутори
Tasić, Tamara
Milanković, Vedran
Batalović, Katarina
Breitenbach, Stefan
Unterweger, Christoph
Fürst, Christian
Pašti, Igor A.
Lazarević-Pašti, Tamara
Чланак у часопису (Објављена верзија)
Метаподаци
Приказ свих података о документу
Апстракт
The increasing usage of pesticides to boost food production inevitably leads to their presence in food samples, requiring the development of efficient methods for their removal. Here, we show that carefully tuned viscose-derived activated carbon fibers can be used for malathion and chlorpyrifos removal from liquid samples, even in complex matrices such as lemon juice and mint ethanol extract. Adsorbents were produced using the Design of Experiments protocol for varying activation conditions (carbonization at 850 °C; activation temperature between 670 and 870 °C; activation time from 30 to 180 min; and CO2 flow rate from 10 to 80 L h−1) and characterized in terms of physical and chemical properties (SEM, EDX, BET, FTIR). Pesticide adsorption kinetics and thermodynamics were then addressed. It was shown that some of the developed adsorbents are also capable of the selective removal of chlorpyrifos in the presence of malathion. The selected materials were not affected by complex matrices ...of real samples. Moreover, the adsorbent can be regenerated at least five times without pronounced performance losses. We suggest that the adsorptive removal of food contaminants can effectively improve food safety and quality, unlike other methods currently in use, which negatively affect the nutritional value of food products. Finally, data-based models trained on well-characterized materials libraries can direct the synthesis of novel adsorbents for the desired application in food processing.

Кључне речи:
activated carbon materials / adsorptive removal / biomass / biowaste / organophosphates / pesticides / properties–performance relations
Извор:
Foods, 2023, 12, 12, 2362-
Финансирање / пројекти:
  • European Regional Development Fund (EFRE) and the province of Upper Austria - program IWB 2014–2020 [BioCarb-K]
  • Министарство науке, технолошког развоја и иновација Републике Србије, институционално финансирање - 200017 (Универзитет у Београду, Институт за нуклеарне науке Винча, Београд-Винча) (RS-MESTD-inst-2020-200017)
  • Министарство науке, технолошког развоја и иновација Републике Србије, институционално финансирање - 200146 (Универзитет у Београду, Факултет за физичку хемију) (RS-MESTD-inst-2020-200146)

DOI: 10.3390/foods12122362

ISSN: 2304-8158

PubMed: 37372573

WoS: 001017161100001

Scopus: 2-s2.0-85163830133
[ Google Scholar ]
17
14
URI
https://vinar.vin.bg.ac.rs/handle/123456789/11217
Колекције
  • 050 - Laboratorija za fizičku hemiju
  • Radovi istraživača
Институција/група
Vinča
TY  - JOUR
AU  - Tasić, Tamara
AU  - Milanković, Vedran
AU  - Batalović, Katarina
AU  - Breitenbach, Stefan
AU  - Unterweger, Christoph
AU  - Fürst, Christian
AU  - Pašti, Igor A.
AU  - Lazarević-Pašti, Tamara
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11217
AB  - The increasing usage of pesticides to boost food production inevitably leads to their presence in food samples, requiring the development of efficient methods for their removal. Here, we show that carefully tuned viscose-derived activated carbon fibers can be used for malathion and chlorpyrifos removal from liquid samples, even in complex matrices such as lemon juice and mint ethanol extract. Adsorbents were produced using the Design of Experiments protocol for varying activation conditions (carbonization at 850 °C; activation temperature between 670 and 870 °C; activation time from 30 to 180 min; and CO2 flow rate from 10 to 80 L h−1) and characterized in terms of physical and chemical properties (SEM, EDX, BET, FTIR). Pesticide adsorption kinetics and thermodynamics were then addressed. It was shown that some of the developed adsorbents are also capable of the selective removal of chlorpyrifos in the presence of malathion. The selected materials were not affected by complex matrices of real samples. Moreover, the adsorbent can be regenerated at least five times without pronounced performance losses. We suggest that the adsorptive removal of food contaminants can effectively improve food safety and quality, unlike other methods currently in use, which negatively affect the nutritional value of food products. Finally, data-based models trained on well-characterized materials libraries can direct the synthesis of novel adsorbents for the desired application in food processing.
T2  - Foods
T1  - Application of Viscose-Based Porous Carbon Fibers in Food Processing—Malathion and Chlorpyrifos Removal
VL  - 12
IS  - 12
SP  - 2362
DO  - 10.3390/foods12122362
ER  - 
@article{
author = "Tasić, Tamara and Milanković, Vedran and Batalović, Katarina and Breitenbach, Stefan and Unterweger, Christoph and Fürst, Christian and Pašti, Igor A. and Lazarević-Pašti, Tamara",
year = "2023",
abstract = "The increasing usage of pesticides to boost food production inevitably leads to their presence in food samples, requiring the development of efficient methods for their removal. Here, we show that carefully tuned viscose-derived activated carbon fibers can be used for malathion and chlorpyrifos removal from liquid samples, even in complex matrices such as lemon juice and mint ethanol extract. Adsorbents were produced using the Design of Experiments protocol for varying activation conditions (carbonization at 850 °C; activation temperature between 670 and 870 °C; activation time from 30 to 180 min; and CO2 flow rate from 10 to 80 L h−1) and characterized in terms of physical and chemical properties (SEM, EDX, BET, FTIR). Pesticide adsorption kinetics and thermodynamics were then addressed. It was shown that some of the developed adsorbents are also capable of the selective removal of chlorpyrifos in the presence of malathion. The selected materials were not affected by complex matrices of real samples. Moreover, the adsorbent can be regenerated at least five times without pronounced performance losses. We suggest that the adsorptive removal of food contaminants can effectively improve food safety and quality, unlike other methods currently in use, which negatively affect the nutritional value of food products. Finally, data-based models trained on well-characterized materials libraries can direct the synthesis of novel adsorbents for the desired application in food processing.",
journal = "Foods",
title = "Application of Viscose-Based Porous Carbon Fibers in Food Processing—Malathion and Chlorpyrifos Removal",
volume = "12",
number = "12",
pages = "2362",
doi = "10.3390/foods12122362"
}
Tasić, T., Milanković, V., Batalović, K., Breitenbach, S., Unterweger, C., Fürst, C., Pašti, I. A.,& Lazarević-Pašti, T.. (2023). Application of Viscose-Based Porous Carbon Fibers in Food Processing—Malathion and Chlorpyrifos Removal. in Foods, 12(12), 2362.
https://doi.org/10.3390/foods12122362
Tasić T, Milanković V, Batalović K, Breitenbach S, Unterweger C, Fürst C, Pašti IA, Lazarević-Pašti T. Application of Viscose-Based Porous Carbon Fibers in Food Processing—Malathion and Chlorpyrifos Removal. in Foods. 2023;12(12):2362.
doi:10.3390/foods12122362 .
Tasić, Tamara, Milanković, Vedran, Batalović, Katarina, Breitenbach, Stefan, Unterweger, Christoph, Fürst, Christian, Pašti, Igor A., Lazarević-Pašti, Tamara, "Application of Viscose-Based Porous Carbon Fibers in Food Processing—Malathion and Chlorpyrifos Removal" in Foods, 12, no. 12 (2023):2362,
https://doi.org/10.3390/foods12122362 . .

DSpace software copyright © 2002-2015  DuraSpace
О репозиторијуму ВинаР | Пошаљите запажања

re3dataOpenAIRERCUB
 

 

Комплетан репозиторијумГрупеАуториНасловиТемеОва институцијаАуториНасловиТеме

Статистика

Преглед статистика

DSpace software copyright © 2002-2015  DuraSpace
О репозиторијуму ВинаР | Пошаљите запажања

re3dataOpenAIRERCUB