Prijović, Željko

Link to this page

Authority KeyName Variants
orcid::0000-0003-1069-2453
  • Prijović, Željko (13)
Projects
Strengthening of the MagBioVin Research and Innovation Team for Development of Novel Approaches for Tumour Therapy based on Nanostructured Materials Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200017 (University of Belgrade, Institute of Nuclear Sciences 'Vinča', Belgrade-Vinča)
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200146 (University of Belgrade, Faculty of Physical Chemistry) Academia Sinica Core Facility and Innovative Instrument [Project AS-CFII-111- 201]
Academia Sinica Core Facility and Innovative Instrument [Project AS-CFII-111-212] COST Action CA [19114]
EUREKA [E! 13303 MED-BIO-TEST] Eureka Project [E!9982]
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200168 (University of Belgrade, Faculty of Chemistry) Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200288 (Innovation Center of the Faculty of Chemistry)
Magnetic and radionuclide labeled nanostructured materials for medical applications Ministry of Education, Science and Technological Development of the Republic of Serbia
Ministry of Education, Science and Technological Development of the Republic of Serbia [E!9982] Ministry of Education, Science and Technological Development of the Republic of Serbia through the Eureka Project (E!9982)
National Science and Technology Council, Taipei, Taiwan [112-2320-B-001-003] Spanish Ministerio de Ciencia, Innovacion y Universidades [MAT2017-88148-R]

Author's Bibliography

Engineering stable and non-immunogenic immunoenzymes for cancer therapy via in situ generated prodrugs

Tseng, Yi-Han; Lin, Hsuan-Pei; Lin, Sung-Yao; Chen, Bing-Mae; Vo, Thanh Nguyet Nguyen; Yang, Shih-Hung; Lin, Yi-Chen; Prijović, Željko; Czosseck, Andreas; Leu, Yu-Lin; Roffler, Steve R.

(2024)

TY  - JOUR
AU  - Tseng, Yi-Han
AU  - Lin, Hsuan-Pei
AU  - Lin, Sung-Yao
AU  - Chen, Bing-Mae
AU  - Vo, Thanh Nguyet Nguyen
AU  - Yang, Shih-Hung
AU  - Lin, Yi-Chen
AU  - Prijović, Željko
AU  - Czosseck, Andreas
AU  - Leu, Yu-Lin
AU  - Roffler, Steve R.
PY  - 2024
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/12961
AB  - Engineering human enzymes for therapeutic applications is attractive but introducing new amino acids may adversely affect enzyme stability and immunogenicity. Here we used a mammalian membrane-tethered screening system (ECSTASY) to evolve human lysosomal beta-glucuronidase (hBG) to hydrolyze a glucuronide metabolite (SN-38G) of the anticancer drug irinotecan (CPT-11). Three human beta-glucuronidase variants (hBG3, hBG10 and hBG19) with 3, 10 and 19 amino acid substitutions were identified that display up to 40-fold enhanced enzymatic activity, higher stability than E. coli beta-glucuronidase in human serum, and similar pharmacokinetics in mice as wild-type hBG. The hBG variants were two to three orders of magnitude less immunogenic than E. coli beta-glucuronidase in hBG transgenic mice. Intravenous administration of an immunoenzyme (hcc49-hBG10) targeting a sialyl-Tn tumor-associated antigen to mice bearing human colon xenografts significantly enhanced the anticancer activity of CPT-11 as measured by tumor suppression and mouse survival. Our results suggest that genetically-modified human enzymes represent a good alternative to microbially-derived enzymes for therapeutic applications.
T2  - Journal of Controlled Release
T1  - Engineering stable and non-immunogenic immunoenzymes for cancer therapy via in situ generated prodrugs
VL  - 369
SP  - 179
EP  - 198
DO  - 10.1016/j.jconrel.2024.02.026
ER  - 
@article{
author = "Tseng, Yi-Han and Lin, Hsuan-Pei and Lin, Sung-Yao and Chen, Bing-Mae and Vo, Thanh Nguyet Nguyen and Yang, Shih-Hung and Lin, Yi-Chen and Prijović, Željko and Czosseck, Andreas and Leu, Yu-Lin and Roffler, Steve R.",
year = "2024",
abstract = "Engineering human enzymes for therapeutic applications is attractive but introducing new amino acids may adversely affect enzyme stability and immunogenicity. Here we used a mammalian membrane-tethered screening system (ECSTASY) to evolve human lysosomal beta-glucuronidase (hBG) to hydrolyze a glucuronide metabolite (SN-38G) of the anticancer drug irinotecan (CPT-11). Three human beta-glucuronidase variants (hBG3, hBG10 and hBG19) with 3, 10 and 19 amino acid substitutions were identified that display up to 40-fold enhanced enzymatic activity, higher stability than E. coli beta-glucuronidase in human serum, and similar pharmacokinetics in mice as wild-type hBG. The hBG variants were two to three orders of magnitude less immunogenic than E. coli beta-glucuronidase in hBG transgenic mice. Intravenous administration of an immunoenzyme (hcc49-hBG10) targeting a sialyl-Tn tumor-associated antigen to mice bearing human colon xenografts significantly enhanced the anticancer activity of CPT-11 as measured by tumor suppression and mouse survival. Our results suggest that genetically-modified human enzymes represent a good alternative to microbially-derived enzymes for therapeutic applications.",
journal = "Journal of Controlled Release",
title = "Engineering stable and non-immunogenic immunoenzymes for cancer therapy via in situ generated prodrugs",
volume = "369",
pages = "179-198",
doi = "10.1016/j.jconrel.2024.02.026"
}
Tseng, Y., Lin, H., Lin, S., Chen, B., Vo, T. N. N., Yang, S., Lin, Y., Prijović, Ž., Czosseck, A., Leu, Y.,& Roffler, S. R.. (2024). Engineering stable and non-immunogenic immunoenzymes for cancer therapy via in situ generated prodrugs. in Journal of Controlled Release, 369, 179-198.
https://doi.org/10.1016/j.jconrel.2024.02.026
Tseng Y, Lin H, Lin S, Chen B, Vo TNN, Yang S, Lin Y, Prijović Ž, Czosseck A, Leu Y, Roffler SR. Engineering stable and non-immunogenic immunoenzymes for cancer therapy via in situ generated prodrugs. in Journal of Controlled Release. 2024;369:179-198.
doi:10.1016/j.jconrel.2024.02.026 .
Tseng, Yi-Han, Lin, Hsuan-Pei, Lin, Sung-Yao, Chen, Bing-Mae, Vo, Thanh Nguyet Nguyen, Yang, Shih-Hung, Lin, Yi-Chen, Prijović, Željko, Czosseck, Andreas, Leu, Yu-Lin, Roffler, Steve R., "Engineering stable and non-immunogenic immunoenzymes for cancer therapy via in situ generated prodrugs" in Journal of Controlled Release, 369 (2024):179-198,
https://doi.org/10.1016/j.jconrel.2024.02.026 . .
1

Synthesis, Characterization, and Therapeutic Efficacy of 177Lu-DMSA@SPIONs in Nanobrachytherapy of Solid Tumors

Stanković, Dragana; Radović, Magdalena; Stanković, Aljoša; Mirković, Marija; Vukadinović, Aleksandar; Mijović, Milica; Milanović, Zorana; Ognjanović, Miloš; Janković, Drina; Antić, Bratislav; Vranješ-Đurić, Sanja; Savić, Miroslav; Prijović, Željko

(2023)

TY  - JOUR
AU  - Stanković, Dragana
AU  - Radović, Magdalena
AU  - Stanković, Aljoša
AU  - Mirković, Marija
AU  - Vukadinović, Aleksandar
AU  - Mijović, Milica
AU  - Milanović, Zorana
AU  - Ognjanović, Miloš
AU  - Janković, Drina
AU  - Antić, Bratislav
AU  - Vranješ-Đurić, Sanja
AU  - Savić, Miroslav
AU  - Prijović, Željko
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11387
AB  - As an alternative to classical brachytherapy, intratumoral injection of radionuclide-labeled nanoparticles (nanobrachytherapy, NBT) has been investigated as a superior delivery method over an intravenous route for radionuclide therapy of solid tumors. We created superparamagnetic iron oxide nanoparticles (SPIONs) coated with meso-1,2-dimercaptosuccinic acid (DMSA) and radiolabeled with Lutetium-177 (177Lu), generating 177Lu-DMSA@SPIONs as a potential antitumor agent for nanobrachytherapy. Efficient radiolabeling of DMSA@SPIONS by 177Lu resulted in a stable bond with minimal leakage in vitro. After an intratumoral injection to mouse colorectal CT-26 or breast 4T1 subcutaneous tumors, the nanoparticles remained well localized at the injection site for weeks, with limited leakage. The dose of 3.70 MBq/100 µg/50 µL of 177Lu-DMSA@SPIONs applied intratumorally resulted in a high therapeutic efficacy, without signs of general toxicity. A decreased dose of 1.85 MBq/100 µg/50 µL still retained therapeutic efficacy, while an increased dose of 9.25 MBq/100 µg/50 µL did not significantly benefit the therapy. Histopathology analysis revealed that the 177Lu-DMSA@SPIONs act within a limited range around the injection site, which explains the good therapeutic efficacy achieved by a single administration of a relatively low dose without the need for increased or repeated dosing. Overall, 177Lu-DMSA@SPIONs are safe and potent agents suitable for intra-tumoral administration for localized tumor radionuclide therapy
T2  - Pharmaceutics
T1  - Synthesis, Characterization, and Therapeutic Efficacy of 177Lu-DMSA@SPIONs in Nanobrachytherapy of Solid Tumors
VL  - 15
IS  - 7
SP  - 1943
DO  - 10.3390/pharmaceutics15071943
ER  - 
@article{
author = "Stanković, Dragana and Radović, Magdalena and Stanković, Aljoša and Mirković, Marija and Vukadinović, Aleksandar and Mijović, Milica and Milanović, Zorana and Ognjanović, Miloš and Janković, Drina and Antić, Bratislav and Vranješ-Đurić, Sanja and Savić, Miroslav and Prijović, Željko",
year = "2023",
abstract = "As an alternative to classical brachytherapy, intratumoral injection of radionuclide-labeled nanoparticles (nanobrachytherapy, NBT) has been investigated as a superior delivery method over an intravenous route for radionuclide therapy of solid tumors. We created superparamagnetic iron oxide nanoparticles (SPIONs) coated with meso-1,2-dimercaptosuccinic acid (DMSA) and radiolabeled with Lutetium-177 (177Lu), generating 177Lu-DMSA@SPIONs as a potential antitumor agent for nanobrachytherapy. Efficient radiolabeling of DMSA@SPIONS by 177Lu resulted in a stable bond with minimal leakage in vitro. After an intratumoral injection to mouse colorectal CT-26 or breast 4T1 subcutaneous tumors, the nanoparticles remained well localized at the injection site for weeks, with limited leakage. The dose of 3.70 MBq/100 µg/50 µL of 177Lu-DMSA@SPIONs applied intratumorally resulted in a high therapeutic efficacy, without signs of general toxicity. A decreased dose of 1.85 MBq/100 µg/50 µL still retained therapeutic efficacy, while an increased dose of 9.25 MBq/100 µg/50 µL did not significantly benefit the therapy. Histopathology analysis revealed that the 177Lu-DMSA@SPIONs act within a limited range around the injection site, which explains the good therapeutic efficacy achieved by a single administration of a relatively low dose without the need for increased or repeated dosing. Overall, 177Lu-DMSA@SPIONs are safe and potent agents suitable for intra-tumoral administration for localized tumor radionuclide therapy",
journal = "Pharmaceutics",
title = "Synthesis, Characterization, and Therapeutic Efficacy of 177Lu-DMSA@SPIONs in Nanobrachytherapy of Solid Tumors",
volume = "15",
number = "7",
pages = "1943",
doi = "10.3390/pharmaceutics15071943"
}
Stanković, D., Radović, M., Stanković, A., Mirković, M., Vukadinović, A., Mijović, M., Milanović, Z., Ognjanović, M., Janković, D., Antić, B., Vranješ-Đurić, S., Savić, M.,& Prijović, Ž.. (2023). Synthesis, Characterization, and Therapeutic Efficacy of 177Lu-DMSA@SPIONs in Nanobrachytherapy of Solid Tumors. in Pharmaceutics, 15(7), 1943.
https://doi.org/10.3390/pharmaceutics15071943
Stanković D, Radović M, Stanković A, Mirković M, Vukadinović A, Mijović M, Milanović Z, Ognjanović M, Janković D, Antić B, Vranješ-Đurić S, Savić M, Prijović Ž. Synthesis, Characterization, and Therapeutic Efficacy of 177Lu-DMSA@SPIONs in Nanobrachytherapy of Solid Tumors. in Pharmaceutics. 2023;15(7):1943.
doi:10.3390/pharmaceutics15071943 .
Stanković, Dragana, Radović, Magdalena, Stanković, Aljoša, Mirković, Marija, Vukadinović, Aleksandar, Mijović, Milica, Milanović, Zorana, Ognjanović, Miloš, Janković, Drina, Antić, Bratislav, Vranješ-Đurić, Sanja, Savić, Miroslav, Prijović, Željko, "Synthesis, Characterization, and Therapeutic Efficacy of 177Lu-DMSA@SPIONs in Nanobrachytherapy of Solid Tumors" in Pharmaceutics, 15, no. 7 (2023):1943,
https://doi.org/10.3390/pharmaceutics15071943 . .
2

90Y-CA/SPIONs for dual magnetic hyperthermia-radionuclide nanobrachytherapy of solid tumours

Vukadinović, Aleksandar; Milanović, Zorana; Ognjanović, Miloš; Janković, Drina; Radović, Magdalena; Mirković, Marija D.; Karageorgou, Maria-Argyro; Bouziotis, Penelope; Erić, Slavica; Vranješ-Đurić, Sanja; Antić, Bratislav; Prijović, Željko

(2022)

TY  - JOUR
AU  - Vukadinović, Aleksandar
AU  - Milanović, Zorana
AU  - Ognjanović, Miloš
AU  - Janković, Drina
AU  - Radović, Magdalena
AU  - Mirković, Marija D.
AU  - Karageorgou, Maria-Argyro
AU  - Bouziotis, Penelope
AU  - Erić, Slavica
AU  - Vranješ-Đurić, Sanja
AU  - Antić, Bratislav
AU  - Prijović, Željko
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10368
AB  - Radiolabelled superparamagnetic iron oxide nanoparticles (SPIONs) are a promising nanomaterial for the development of dual radiation/hyperthermia cancer therapy. To that purpose, flower-shaped SPIONs with an exceptional heating capability were synthesised and coated with citrate, dextran or (3-aminopropyl)triethoxysilane. Both non-coated and coated SPIONs were nontoxic to CT-26 mouse colon cancer cells up to 1.0 mg ml−1 in vitro. In an oscillating magnetic field, citrate-coated SPIONs (CA/SPIONs) displayed the highest heating rate (SAR ∼ 253 W g−1) and the strongest hyperthermia effects against CT-26 cells. Labelling of the CA/SPIONs by the 90Y radionuclide, emitting β− radiation with an average/maximum energy of 0.94/2.23 MeV, and deep tissue penetration generated 90Y-CA/SPIONs intended for the therapy of solid tumours. However, intravenous injection of 90Y-CA/SPIONs in CT-26 xenograft-bearing mice resulted in low tumour accumulation. On the contrary, intratumoural injection resulted in long-term retention at the injection site. A single intratumoural injection of 0.25 mg CA/SPIONs followed by 30-min courses of magnetic hyperthermia for four consecutive days caused a moderate antitumour effect against CT-26 and 4T1 mouse tumour xenografts. Intratumoural application of 1.85 MBq/0.25 mg 90Y-CA/SPIONs, alone or combined with hyperthermia, caused a significant (P ≤ 0.01) antitumour effect without signs of systemic toxicity. The results confirm the suitability of 90Y-CA/SPIONs for monotherapy or dual magnetic hyperthermia-radionuclide nanobrachytherapy (NBT) of solid tumours.
T2  - Nanotechnology
T1  - 90Y-CA/SPIONs for dual magnetic hyperthermia-radionuclide nanobrachytherapy of solid tumours
VL  - 33
IS  - 40
SP  - 405102
DO  - 10.1088/1361-6528/ac7ac0
ER  - 
@article{
author = "Vukadinović, Aleksandar and Milanović, Zorana and Ognjanović, Miloš and Janković, Drina and Radović, Magdalena and Mirković, Marija D. and Karageorgou, Maria-Argyro and Bouziotis, Penelope and Erić, Slavica and Vranješ-Đurić, Sanja and Antić, Bratislav and Prijović, Željko",
year = "2022",
abstract = "Radiolabelled superparamagnetic iron oxide nanoparticles (SPIONs) are a promising nanomaterial for the development of dual radiation/hyperthermia cancer therapy. To that purpose, flower-shaped SPIONs with an exceptional heating capability were synthesised and coated with citrate, dextran or (3-aminopropyl)triethoxysilane. Both non-coated and coated SPIONs were nontoxic to CT-26 mouse colon cancer cells up to 1.0 mg ml−1 in vitro. In an oscillating magnetic field, citrate-coated SPIONs (CA/SPIONs) displayed the highest heating rate (SAR ∼ 253 W g−1) and the strongest hyperthermia effects against CT-26 cells. Labelling of the CA/SPIONs by the 90Y radionuclide, emitting β− radiation with an average/maximum energy of 0.94/2.23 MeV, and deep tissue penetration generated 90Y-CA/SPIONs intended for the therapy of solid tumours. However, intravenous injection of 90Y-CA/SPIONs in CT-26 xenograft-bearing mice resulted in low tumour accumulation. On the contrary, intratumoural injection resulted in long-term retention at the injection site. A single intratumoural injection of 0.25 mg CA/SPIONs followed by 30-min courses of magnetic hyperthermia for four consecutive days caused a moderate antitumour effect against CT-26 and 4T1 mouse tumour xenografts. Intratumoural application of 1.85 MBq/0.25 mg 90Y-CA/SPIONs, alone or combined with hyperthermia, caused a significant (P ≤ 0.01) antitumour effect without signs of systemic toxicity. The results confirm the suitability of 90Y-CA/SPIONs for monotherapy or dual magnetic hyperthermia-radionuclide nanobrachytherapy (NBT) of solid tumours.",
journal = "Nanotechnology",
title = "90Y-CA/SPIONs for dual magnetic hyperthermia-radionuclide nanobrachytherapy of solid tumours",
volume = "33",
number = "40",
pages = "405102",
doi = "10.1088/1361-6528/ac7ac0"
}
Vukadinović, A., Milanović, Z., Ognjanović, M., Janković, D., Radović, M., Mirković, M. D., Karageorgou, M., Bouziotis, P., Erić, S., Vranješ-Đurić, S., Antić, B.,& Prijović, Ž.. (2022). 90Y-CA/SPIONs for dual magnetic hyperthermia-radionuclide nanobrachytherapy of solid tumours. in Nanotechnology, 33(40), 405102.
https://doi.org/10.1088/1361-6528/ac7ac0
Vukadinović A, Milanović Z, Ognjanović M, Janković D, Radović M, Mirković MD, Karageorgou M, Bouziotis P, Erić S, Vranješ-Đurić S, Antić B, Prijović Ž. 90Y-CA/SPIONs for dual magnetic hyperthermia-radionuclide nanobrachytherapy of solid tumours. in Nanotechnology. 2022;33(40):405102.
doi:10.1088/1361-6528/ac7ac0 .
Vukadinović, Aleksandar, Milanović, Zorana, Ognjanović, Miloš, Janković, Drina, Radović, Magdalena, Mirković, Marija D., Karageorgou, Maria-Argyro, Bouziotis, Penelope, Erić, Slavica, Vranješ-Đurić, Sanja, Antić, Bratislav, Prijović, Željko, "90Y-CA/SPIONs for dual magnetic hyperthermia-radionuclide nanobrachytherapy of solid tumours" in Nanotechnology, 33, no. 40 (2022):405102,
https://doi.org/10.1088/1361-6528/ac7ac0 . .
9
1
5

Flower-shaped magnetic nanoparticles for theranostic applications

Ognjanović, Miloš; Mirković, Marija; Prijović, Željko; Vranješ-Đurić, Sanja; Antić, Bratislav

(University in Banjaluka : Faculty of Technology, 2022)

TY  - CONF
AU  - Ognjanović, Miloš
AU  - Mirković, Marija
AU  - Prijović, Željko
AU  - Vranješ-Đurić, Sanja
AU  - Antić, Bratislav
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11669
AB  - Iron oxide-based magnetic nanoparticles (MNPs) are promising candidates for dual radiation and magnetic hyperthermia cancer therapy (MHT). Although iron oxide nanoparticles are currently approved by FDA for imaging purposes and for the treatment of anaemia, magnetic nanoparticles designed for the efficient magnetic hyperthermia cancer treatment must respond to specific physicochemical properties in terms of magneto-energy conversion, heat dose production, surface chemistry and aggregation state. In the past few decades, these requirements have boosted the development of a new generation of MNPs specifically aimed for MHT. Between various synthesis pathways, specific assembly of small nanoparticles into flower-shaped structures, achieved in polyol-mediated synthesis opened new avenues for MNPs hyperthermia cancer treatment. High heat generation in MHT was most-probably a consequence of the specific organization and agglomeration of individual cores inside each particle and their interaction in external alternating magnetic field. When we add to that, low cytotoxicity, the possibility of surface modification and further functionalization, then polyol-prepared MNPs emerge as one of the best candidates for combined cancer therapy. In our recent studies, we have coated magnetic nanoflowers prepared by polyol-mediated synthesis with various organic ligands (citric acid, polyethylene glycol, (3- aminopropyl)triethoxysilane) and successfully radiolabelled them with high-energy beta emitters 90Y, 177Lu and 131I, as well as gamma emitter 99mTc, which can be used both as therapeutic and diagnostic agents. Finally, we have successfully applied these magnetic nanoconstructs in combined magnetic hyperthermia-radionuclide nanobrachytherapy of CT-26 mouse colon and 4T1 metastatic mouse breast tumours.
PB  - University in Banjaluka : Faculty of Technology
C3  - 14th Conference of chemists, technologists and environmentalists of Republic of Srpska : the book of abstracts; Oct 21-22, Banja Luka, Republic of Srpska
T1  - Flower-shaped magnetic nanoparticles for theranostic applications
SP  - 197
UR  - https://hdl.handle.net/21.15107/rcub_vinar_11669
ER  - 
@conference{
author = "Ognjanović, Miloš and Mirković, Marija and Prijović, Željko and Vranješ-Đurić, Sanja and Antić, Bratislav",
year = "2022",
abstract = "Iron oxide-based magnetic nanoparticles (MNPs) are promising candidates for dual radiation and magnetic hyperthermia cancer therapy (MHT). Although iron oxide nanoparticles are currently approved by FDA for imaging purposes and for the treatment of anaemia, magnetic nanoparticles designed for the efficient magnetic hyperthermia cancer treatment must respond to specific physicochemical properties in terms of magneto-energy conversion, heat dose production, surface chemistry and aggregation state. In the past few decades, these requirements have boosted the development of a new generation of MNPs specifically aimed for MHT. Between various synthesis pathways, specific assembly of small nanoparticles into flower-shaped structures, achieved in polyol-mediated synthesis opened new avenues for MNPs hyperthermia cancer treatment. High heat generation in MHT was most-probably a consequence of the specific organization and agglomeration of individual cores inside each particle and their interaction in external alternating magnetic field. When we add to that, low cytotoxicity, the possibility of surface modification and further functionalization, then polyol-prepared MNPs emerge as one of the best candidates for combined cancer therapy. In our recent studies, we have coated magnetic nanoflowers prepared by polyol-mediated synthesis with various organic ligands (citric acid, polyethylene glycol, (3- aminopropyl)triethoxysilane) and successfully radiolabelled them with high-energy beta emitters 90Y, 177Lu and 131I, as well as gamma emitter 99mTc, which can be used both as therapeutic and diagnostic agents. Finally, we have successfully applied these magnetic nanoconstructs in combined magnetic hyperthermia-radionuclide nanobrachytherapy of CT-26 mouse colon and 4T1 metastatic mouse breast tumours.",
publisher = "University in Banjaluka : Faculty of Technology",
journal = "14th Conference of chemists, technologists and environmentalists of Republic of Srpska : the book of abstracts; Oct 21-22, Banja Luka, Republic of Srpska",
title = "Flower-shaped magnetic nanoparticles for theranostic applications",
pages = "197",
url = "https://hdl.handle.net/21.15107/rcub_vinar_11669"
}
Ognjanović, M., Mirković, M., Prijović, Ž., Vranješ-Đurić, S.,& Antić, B.. (2022). Flower-shaped magnetic nanoparticles for theranostic applications. in 14th Conference of chemists, technologists and environmentalists of Republic of Srpska : the book of abstracts; Oct 21-22, Banja Luka, Republic of Srpska
University in Banjaluka : Faculty of Technology., 197.
https://hdl.handle.net/21.15107/rcub_vinar_11669
Ognjanović M, Mirković M, Prijović Ž, Vranješ-Đurić S, Antić B. Flower-shaped magnetic nanoparticles for theranostic applications. in 14th Conference of chemists, technologists and environmentalists of Republic of Srpska : the book of abstracts; Oct 21-22, Banja Luka, Republic of Srpska. 2022;:197.
https://hdl.handle.net/21.15107/rcub_vinar_11669 .
Ognjanović, Miloš, Mirković, Marija, Prijović, Željko, Vranješ-Đurić, Sanja, Antić, Bratislav, "Flower-shaped magnetic nanoparticles for theranostic applications" in 14th Conference of chemists, technologists and environmentalists of Republic of Srpska : the book of abstracts; Oct 21-22, Banja Luka, Republic of Srpska (2022):197,
https://hdl.handle.net/21.15107/rcub_vinar_11669 .

Co(III), Ni(II) and Cu(II) complexes with a tetradentate Schiff base ligand: synthesis, characterization, electrochemical behavior, binding assessment and in vitro cytotoxicity

Mirković, Marija D.; Radović, Magdalena; Stanković, Dalibor M.; Vranješ-Đurić, Sanja; Janković, Drina; Petrović, Djordje; Mihajlović-Lalić, Ljiljana E.; Prijović, Željko; Milanović, Zorana

(2022)

TY  - JOUR
AU  - Mirković, Marija D.
AU  - Radović, Magdalena
AU  - Stanković, Dalibor M.
AU  - Vranješ-Đurić, Sanja
AU  - Janković, Drina
AU  - Petrović, Djordje
AU  - Mihajlović-Lalić, Ljiljana E.
AU  - Prijović, Željko
AU  - Milanović, Zorana
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10169
AB  - Two new Schiff base cobalt(III) ([Co(LH)Cl2], 1) and nickel(II) ([Ni(LH)ClO4], 2) complexes with a diimine-dioxime ligand, (4,9-diaza-3,10-diethyl-3,9-dodecadiene-2,11-dione bis oxime (LH2)), were synthesized and characterized. The compounds were obtained in MeOH from corresponding metal salts and LH2 in molar ratio 1:1 and further characterized by mass spectrometry, IR spectroscopy, electrochemistry, and elemental analysis. Previously reported copper(II) analog ([Cu2(LH)2]·(ClO4)2, 3) was joined to 1 and 2, and the three metal analogs, 1–3, were further investigated in terms of their electrochemical behavior. Binding studies of the complexes with deoxyribonucleic acid (DNA) and human serum albumin (HSA) were carried out using both spectrophotometric and electrochemical methods. All three complexes exhibit binding affinity towards the DNA chain through intercalative interactions. The binding reaction with HSA showed for 1 and 3 decrease in the peak current obtained in the case of complexes before the addition of HSA, while the Ni complex–HSA possesses the same electroactivity as starting complex. The cytotoxicity of LH2 as well as its metal complexes, and cisplatin were evaluated on CT-26 mouse colon carcinoma and human LS174T cancer cell lines employing MTT assay. The copper(II) complex exhibited very promising anticancer activity compared with cisplatin.
T2  - Journal of Coordination Chemistry
T1  - Co(III), Ni(II) and Cu(II) complexes with a tetradentate Schiff base ligand: synthesis, characterization, electrochemical behavior, binding assessment and in vitro cytotoxicity
IS  - 1-2
SP  - 211
EP  - 224
DO  - 10.1080/00958972.2022.2032683
ER  - 
@article{
author = "Mirković, Marija D. and Radović, Magdalena and Stanković, Dalibor M. and Vranješ-Đurić, Sanja and Janković, Drina and Petrović, Djordje and Mihajlović-Lalić, Ljiljana E. and Prijović, Željko and Milanović, Zorana",
year = "2022",
abstract = "Two new Schiff base cobalt(III) ([Co(LH)Cl2], 1) and nickel(II) ([Ni(LH)ClO4], 2) complexes with a diimine-dioxime ligand, (4,9-diaza-3,10-diethyl-3,9-dodecadiene-2,11-dione bis oxime (LH2)), were synthesized and characterized. The compounds were obtained in MeOH from corresponding metal salts and LH2 in molar ratio 1:1 and further characterized by mass spectrometry, IR spectroscopy, electrochemistry, and elemental analysis. Previously reported copper(II) analog ([Cu2(LH)2]·(ClO4)2, 3) was joined to 1 and 2, and the three metal analogs, 1–3, were further investigated in terms of their electrochemical behavior. Binding studies of the complexes with deoxyribonucleic acid (DNA) and human serum albumin (HSA) were carried out using both spectrophotometric and electrochemical methods. All three complexes exhibit binding affinity towards the DNA chain through intercalative interactions. The binding reaction with HSA showed for 1 and 3 decrease in the peak current obtained in the case of complexes before the addition of HSA, while the Ni complex–HSA possesses the same electroactivity as starting complex. The cytotoxicity of LH2 as well as its metal complexes, and cisplatin were evaluated on CT-26 mouse colon carcinoma and human LS174T cancer cell lines employing MTT assay. The copper(II) complex exhibited very promising anticancer activity compared with cisplatin.",
journal = "Journal of Coordination Chemistry",
title = "Co(III), Ni(II) and Cu(II) complexes with a tetradentate Schiff base ligand: synthesis, characterization, electrochemical behavior, binding assessment and in vitro cytotoxicity",
number = "1-2",
pages = "211-224",
doi = "10.1080/00958972.2022.2032683"
}
Mirković, M. D., Radović, M., Stanković, D. M., Vranješ-Đurić, S., Janković, D., Petrović, D., Mihajlović-Lalić, L. E., Prijović, Ž.,& Milanović, Z.. (2022). Co(III), Ni(II) and Cu(II) complexes with a tetradentate Schiff base ligand: synthesis, characterization, electrochemical behavior, binding assessment and in vitro cytotoxicity. in Journal of Coordination Chemistry(1-2), 211-224.
https://doi.org/10.1080/00958972.2022.2032683
Mirković MD, Radović M, Stanković DM, Vranješ-Đurić S, Janković D, Petrović D, Mihajlović-Lalić LE, Prijović Ž, Milanović Z. Co(III), Ni(II) and Cu(II) complexes with a tetradentate Schiff base ligand: synthesis, characterization, electrochemical behavior, binding assessment and in vitro cytotoxicity. in Journal of Coordination Chemistry. 2022;(1-2):211-224.
doi:10.1080/00958972.2022.2032683 .
Mirković, Marija D., Radović, Magdalena, Stanković, Dalibor M., Vranješ-Đurić, Sanja, Janković, Drina, Petrović, Djordje, Mihajlović-Lalić, Ljiljana E., Prijović, Željko, Milanović, Zorana, "Co(III), Ni(II) and Cu(II) complexes with a tetradentate Schiff base ligand: synthesis, characterization, electrochemical behavior, binding assessment and in vitro cytotoxicity" in Journal of Coordination Chemistry, no. 1-2 (2022):211-224,
https://doi.org/10.1080/00958972.2022.2032683 . .
1
1

Magnetically induced controlled release from glucose-modified liposomes loaded with Fe3O4 nanoparticles

Cvjetinović, Đorđe; Milanović, Zorana; Mirković, Marija D.; Petrović, Jelena; Vesković, Ana; Popović-Bijelić, Ana; Prijović, Željko; Janković, Drina; Vranješ-Đurić, Sanja

(2021)

TY  - JOUR
AU  - Cvjetinović, Đorđe
AU  - Milanović, Zorana
AU  - Mirković, Marija D.
AU  - Petrović, Jelena
AU  - Vesković, Ana
AU  - Popović-Bijelić, Ana
AU  - Prijović, Željko
AU  - Janković, Drina
AU  - Vranješ-Đurić, Sanja
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10063
AB  - Small glucose-modified liposomes (GMLs) were loaded with magnetic Fe3O4 nanoparticles (MNPs) and fluorescein using a standard thin layer preparation procedure and a varying lipid/MNPs ratio. The liposomes were characterized with TEM and DLS measurements, and MNPs encapsulation rate was determined using ICP-OES. Prepared liposomes were stored at 5 °C for 30 days and subsequently exposed to an external magnetic field (20 mT) with varying exposure times (2‒20 min), at room temperature. The release of fluorescein from GMLs induced by the magnetic field exposures was quantified, showing a high release rate (25‒85%) depending on the concentration of MNPs in GMLs. EPR measurements were conducted during the liposomes storage period in order to provide semi-quantitative information of possible MNPs oxidation from Fe3O4 to Fe2O3 inside the liposomes, impacting MNPs magnetic properties. In contrast to the MNPs water dispersion, no significant change in the EPR signal of MNPs encapsulated inside GMLs was detected over the course of 30 days. The data presented in this study indicate that GMLs loaded with MNPs maintain a high stability for prolonged periods of time and that this delivery system may be used for magnetically assisted controlled drug release.
T2  - Journal of Nanoparticle Research
T1  - Magnetically induced controlled release from glucose-modified liposomes loaded with Fe3O4 nanoparticles
VL  - 23
IS  - 11
SP  - 252
DO  - 10.1007/s11051-021-05375-2
ER  - 
@article{
author = "Cvjetinović, Đorđe and Milanović, Zorana and Mirković, Marija D. and Petrović, Jelena and Vesković, Ana and Popović-Bijelić, Ana and Prijović, Željko and Janković, Drina and Vranješ-Đurić, Sanja",
year = "2021",
abstract = "Small glucose-modified liposomes (GMLs) were loaded with magnetic Fe3O4 nanoparticles (MNPs) and fluorescein using a standard thin layer preparation procedure and a varying lipid/MNPs ratio. The liposomes were characterized with TEM and DLS measurements, and MNPs encapsulation rate was determined using ICP-OES. Prepared liposomes were stored at 5 °C for 30 days and subsequently exposed to an external magnetic field (20 mT) with varying exposure times (2‒20 min), at room temperature. The release of fluorescein from GMLs induced by the magnetic field exposures was quantified, showing a high release rate (25‒85%) depending on the concentration of MNPs in GMLs. EPR measurements were conducted during the liposomes storage period in order to provide semi-quantitative information of possible MNPs oxidation from Fe3O4 to Fe2O3 inside the liposomes, impacting MNPs magnetic properties. In contrast to the MNPs water dispersion, no significant change in the EPR signal of MNPs encapsulated inside GMLs was detected over the course of 30 days. The data presented in this study indicate that GMLs loaded with MNPs maintain a high stability for prolonged periods of time and that this delivery system may be used for magnetically assisted controlled drug release.",
journal = "Journal of Nanoparticle Research",
title = "Magnetically induced controlled release from glucose-modified liposomes loaded with Fe3O4 nanoparticles",
volume = "23",
number = "11",
pages = "252",
doi = "10.1007/s11051-021-05375-2"
}
Cvjetinović, Đ., Milanović, Z., Mirković, M. D., Petrović, J., Vesković, A., Popović-Bijelić, A., Prijović, Ž., Janković, D.,& Vranješ-Đurić, S.. (2021). Magnetically induced controlled release from glucose-modified liposomes loaded with Fe3O4 nanoparticles. in Journal of Nanoparticle Research, 23(11), 252.
https://doi.org/10.1007/s11051-021-05375-2
Cvjetinović Đ, Milanović Z, Mirković MD, Petrović J, Vesković A, Popović-Bijelić A, Prijović Ž, Janković D, Vranješ-Đurić S. Magnetically induced controlled release from glucose-modified liposomes loaded with Fe3O4 nanoparticles. in Journal of Nanoparticle Research. 2021;23(11):252.
doi:10.1007/s11051-021-05375-2 .
Cvjetinović, Đorđe, Milanović, Zorana, Mirković, Marija D., Petrović, Jelena, Vesković, Ana, Popović-Bijelić, Ana, Prijović, Željko, Janković, Drina, Vranješ-Đurić, Sanja, "Magnetically induced controlled release from glucose-modified liposomes loaded with Fe3O4 nanoparticles" in Journal of Nanoparticle Research, 23, no. 11 (2021):252,
https://doi.org/10.1007/s11051-021-05375-2 . .
1
1

177Lu–labeled micro liposomes as a potential radiosynoviorthesis therapeutic agent

Cvjetinović, Đorđe; Janković, Drina; Milanović, Zorana; Mirković, Marija D.; Petrović, Jelena; Prijović, Željko; Poghosyan, Emiliya; Vranješ-Đurić, Sanja

(2021)

TY  - JOUR
AU  - Cvjetinović, Đorđe
AU  - Janković, Drina
AU  - Milanović, Zorana
AU  - Mirković, Marija D.
AU  - Petrović, Jelena
AU  - Prijović, Željko
AU  - Poghosyan, Emiliya
AU  - Vranješ-Đurić, Sanja
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9946
AB  - Micro–sized multivesicular liposomes were prepared, radiolabeled with 177Lu, and tested in vitro and in vivo to evaluate the potential of 177Lu–labeled micro liposomes in radiosynoviorthesis (RSO) therapy. A standard reverse–phase procedure of liposome preparation with a lipid mixture of DPPC: CHOL (80:20%) was used for the synthesis. TEM and fluorescence microscopy imaging were performed to determine the size, shape, and structure of the prepared liposomes. Both measurements are in good agreement while TEM micrographs additionally indicate to a large multivesicular inner structure of prepared liposomes. A simple and straightforward procedure was used for liposome radiolabeling with 177Lu, a well–known and commonly used radionuclide in radiotherapy with favorable properties, that can be exploited in RSO therapy. Radiolabeled 177Lu–liposomes were tested in vitro for stability and then injected into the knee joints of Wistar rats where liposome in vivo behavior was followed up to 30 days post injection. Results from both ex vivo biodistribution and in vivo imaging studies presented a high stability and retention (>94 %ID) of 177Lu–micro liposomes in the synovial liquid for the entire observation period. Leakage of free 177Lu or 177Lu–liposomes from the synovial fluid has not been detected, indicating to a possible application of 177Lu–liposomes in radiosynoviorthesis (RSO) therapy.
T2  - International Journal of Pharmaceutics
T2  - International Journal of PharmaceuticsInternational Journal of Pharmaceutics
T1  - 177Lu–labeled micro liposomes as a potential radiosynoviorthesis therapeutic agent
VL  - 608
SP  - 121106
DO  - 10.1016/j.ijpharm.2021.121106
ER  - 
@article{
author = "Cvjetinović, Đorđe and Janković, Drina and Milanović, Zorana and Mirković, Marija D. and Petrović, Jelena and Prijović, Željko and Poghosyan, Emiliya and Vranješ-Đurić, Sanja",
year = "2021",
abstract = "Micro–sized multivesicular liposomes were prepared, radiolabeled with 177Lu, and tested in vitro and in vivo to evaluate the potential of 177Lu–labeled micro liposomes in radiosynoviorthesis (RSO) therapy. A standard reverse–phase procedure of liposome preparation with a lipid mixture of DPPC: CHOL (80:20%) was used for the synthesis. TEM and fluorescence microscopy imaging were performed to determine the size, shape, and structure of the prepared liposomes. Both measurements are in good agreement while TEM micrographs additionally indicate to a large multivesicular inner structure of prepared liposomes. A simple and straightforward procedure was used for liposome radiolabeling with 177Lu, a well–known and commonly used radionuclide in radiotherapy with favorable properties, that can be exploited in RSO therapy. Radiolabeled 177Lu–liposomes were tested in vitro for stability and then injected into the knee joints of Wistar rats where liposome in vivo behavior was followed up to 30 days post injection. Results from both ex vivo biodistribution and in vivo imaging studies presented a high stability and retention (>94 %ID) of 177Lu–micro liposomes in the synovial liquid for the entire observation period. Leakage of free 177Lu or 177Lu–liposomes from the synovial fluid has not been detected, indicating to a possible application of 177Lu–liposomes in radiosynoviorthesis (RSO) therapy.",
journal = "International Journal of Pharmaceutics, International Journal of PharmaceuticsInternational Journal of Pharmaceutics",
title = "177Lu–labeled micro liposomes as a potential radiosynoviorthesis therapeutic agent",
volume = "608",
pages = "121106",
doi = "10.1016/j.ijpharm.2021.121106"
}
Cvjetinović, Đ., Janković, D., Milanović, Z., Mirković, M. D., Petrović, J., Prijović, Ž., Poghosyan, E.,& Vranješ-Đurić, S.. (2021). 177Lu–labeled micro liposomes as a potential radiosynoviorthesis therapeutic agent. in International Journal of Pharmaceutics, 608, 121106.
https://doi.org/10.1016/j.ijpharm.2021.121106
Cvjetinović Đ, Janković D, Milanović Z, Mirković MD, Petrović J, Prijović Ž, Poghosyan E, Vranješ-Đurić S. 177Lu–labeled micro liposomes as a potential radiosynoviorthesis therapeutic agent. in International Journal of Pharmaceutics. 2021;608:121106.
doi:10.1016/j.ijpharm.2021.121106 .
Cvjetinović, Đorđe, Janković, Drina, Milanović, Zorana, Mirković, Marija D., Petrović, Jelena, Prijović, Željko, Poghosyan, Emiliya, Vranješ-Đurić, Sanja, "177Lu–labeled micro liposomes as a potential radiosynoviorthesis therapeutic agent" in International Journal of Pharmaceutics, 608 (2021):121106,
https://doi.org/10.1016/j.ijpharm.2021.121106 . .

Bioevaluation of glucose-modified liposomes as a potential drug delivery system for cancer treatment using 177-Lu radiotracking

Cvjetinović, Đorđe; Prijović, Željko; Janković, Drina; Radović, Magdalena; Mirković, Marija D.; Milanović, Zorana; Mojović, Miloš; Škalamera, Đani; Vranješ-Đurić, Sanja

(2021)

TY  - JOUR
AU  - Cvjetinović, Đorđe
AU  - Prijović, Željko
AU  - Janković, Drina
AU  - Radović, Magdalena
AU  - Mirković, Marija D.
AU  - Milanović, Zorana
AU  - Mojović, Miloš
AU  - Škalamera, Đani
AU  - Vranješ-Đurić, Sanja
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9151
AB  - Liposomes are promising drug's delivery systems due to decreased toxicity of the liposome-encapsulated drug, but wider clinical application requires their more efficient tumor targeting with uptake, controlled drug release and higher shelf life. The unique metabolic characteristics of cancer cells based on higher demand for energy and therefore increased glucose utilization were exploited in the design of glucose modified liposomes (GML) with the aim to provide increased tumor targeting via glucose transporters and increased ability of drug delivery into tumor cells. Tumor accumulating potential of GML and non-glucose liposomes (NGL) were investigated on CT26 and LS174T tumor-bearing mice by simple and reliable radiotracer method using 177Lu as radioactive marker. Both liposomes, GML and NGL were radiolabeled in high radiolabeling yield, showing high in vitro stability in biological media, as the main prerequisite for the biodistribution studies. Tumors displayed significantly better accumulation of 177Lu-GML with the maximum uptake 6 h post-injection (5.8 ± 0.2%/g in LS174T tumor and 5.1 ± 0.5%/g in CT26 tumor), compared to negligible uptake of 177Lu-NGL (0.6 ± 0.1%/g in LS174T tumor and 0.9 ± 0.2%/g in CT26 tumor). Results of comparative biodistribution studies of 177Lu-NGL and 177Lu-GML indicate that increased accumulation of GML is enabled by glucose transporters and subsequent endocytosis, resulting in their prolonged retention in tumor tissues (up to 72 h). Direct radiolabeling of liposomes with 177Lu may be used not only for biodistribution studies using radiotracking, but also for cancer treatment. © 2021 Elsevier B.V.
T2  - Journal of Controlled Release
T1  - Bioevaluation of glucose-modified liposomes as a potential drug delivery system for cancer treatment using 177-Lu radiotracking
VL  - 332
SP  - 301
EP  - 311
DO  - 10.1016/j.jconrel.2021.03.006
ER  - 
@article{
author = "Cvjetinović, Đorđe and Prijović, Željko and Janković, Drina and Radović, Magdalena and Mirković, Marija D. and Milanović, Zorana and Mojović, Miloš and Škalamera, Đani and Vranješ-Đurić, Sanja",
year = "2021",
abstract = "Liposomes are promising drug's delivery systems due to decreased toxicity of the liposome-encapsulated drug, but wider clinical application requires their more efficient tumor targeting with uptake, controlled drug release and higher shelf life. The unique metabolic characteristics of cancer cells based on higher demand for energy and therefore increased glucose utilization were exploited in the design of glucose modified liposomes (GML) with the aim to provide increased tumor targeting via glucose transporters and increased ability of drug delivery into tumor cells. Tumor accumulating potential of GML and non-glucose liposomes (NGL) were investigated on CT26 and LS174T tumor-bearing mice by simple and reliable radiotracer method using 177Lu as radioactive marker. Both liposomes, GML and NGL were radiolabeled in high radiolabeling yield, showing high in vitro stability in biological media, as the main prerequisite for the biodistribution studies. Tumors displayed significantly better accumulation of 177Lu-GML with the maximum uptake 6 h post-injection (5.8 ± 0.2%/g in LS174T tumor and 5.1 ± 0.5%/g in CT26 tumor), compared to negligible uptake of 177Lu-NGL (0.6 ± 0.1%/g in LS174T tumor and 0.9 ± 0.2%/g in CT26 tumor). Results of comparative biodistribution studies of 177Lu-NGL and 177Lu-GML indicate that increased accumulation of GML is enabled by glucose transporters and subsequent endocytosis, resulting in their prolonged retention in tumor tissues (up to 72 h). Direct radiolabeling of liposomes with 177Lu may be used not only for biodistribution studies using radiotracking, but also for cancer treatment. © 2021 Elsevier B.V.",
journal = "Journal of Controlled Release",
title = "Bioevaluation of glucose-modified liposomes as a potential drug delivery system for cancer treatment using 177-Lu radiotracking",
volume = "332",
pages = "301-311",
doi = "10.1016/j.jconrel.2021.03.006"
}
Cvjetinović, Đ., Prijović, Ž., Janković, D., Radović, M., Mirković, M. D., Milanović, Z., Mojović, M., Škalamera, Đ.,& Vranješ-Đurić, S.. (2021). Bioevaluation of glucose-modified liposomes as a potential drug delivery system for cancer treatment using 177-Lu radiotracking. in Journal of Controlled Release, 332, 301-311.
https://doi.org/10.1016/j.jconrel.2021.03.006
Cvjetinović Đ, Prijović Ž, Janković D, Radović M, Mirković MD, Milanović Z, Mojović M, Škalamera Đ, Vranješ-Đurić S. Bioevaluation of glucose-modified liposomes as a potential drug delivery system for cancer treatment using 177-Lu radiotracking. in Journal of Controlled Release. 2021;332:301-311.
doi:10.1016/j.jconrel.2021.03.006 .
Cvjetinović, Đorđe, Prijović, Željko, Janković, Drina, Radović, Magdalena, Mirković, Marija D., Milanović, Zorana, Mojović, Miloš, Škalamera, Đani, Vranješ-Đurić, Sanja, "Bioevaluation of glucose-modified liposomes as a potential drug delivery system for cancer treatment using 177-Lu radiotracking" in Journal of Controlled Release, 332 (2021):301-311,
https://doi.org/10.1016/j.jconrel.2021.03.006 . .
1
24
4
20

177Lu-doxycycline as potential radiopharmaceutical: electrochemical characterization, radiolabeling, and biodistribution in tumor-bearing mice

Milanović, Zorana; Janković, Drina; Vranješ-Đurić, Sanja; Radović, Magdalena; Prijović, Željko; Zavišić, Gordana; Perić, Marko; Stanković, Dalibor M.; Mirković, Marija D.

(2021)

TY  - JOUR
AU  - Milanović, Zorana
AU  - Janković, Drina
AU  - Vranješ-Đurić, Sanja
AU  - Radović, Magdalena
AU  - Prijović, Željko
AU  - Zavišić, Gordana
AU  - Perić, Marko
AU  - Stanković, Dalibor M.
AU  - Mirković, Marija D.
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9960
AB  - Purpose Recent studies with doxycycline as adjuvant therapy to conventional chemotherapy have shown promising results in cancer therapy. The current study aimed to examine the capability of 177Lu-labeled tetracycline ligand, doxycycline hyclate, to use as an anticancer agent.Materials and methods Doxycycline was radiolabeled with beta-emitting radioisotope 177Lu. Complex formation and its interaction with DNA were investigated electrochemically. Binding of 177Lu-doxycycline to CT 26 cell line was done. Biodistribution of 177Lu-doxycycline was examined in healthy Wistar rats and CT26 colon carcinoma tumor-bearing mice by i.v. and i.p. administration, respectively.Results Doxycycline hyclate was successfully radiolabeled with 177Lu in high radiolabeling yield (>99%). The radiolabeled complex was stable in vitro in saline and human serum over 72 h. Non-radioactive Lu-doxycycline complex formation was demonstrated electrochemically as well. Intercalative interactions of the doxycycline and Lu-doxycycline with DNA were proved using simultaneously spectrophotometric and electrochemical methods. The binding of the radiolabeled complex with plasma proteins was 4.0 ± 0.4%. The partition coefficient showed the lipophilic nature of the complex similar to the free ligand. The binding curve demonstrates binding from 0.1 nM concentrations of 177Lu-doxycycline, with half-binding estimated ∼100 nM. Biodistribution studies of 177Lu-doxycycline in CT26 colon tumor-bearing mice showed a satisfactory accumulation rate in the tumor (2.88 ± 0.85% ID/g) 3 h after intraperitoneal injection. Both the hepatobiliary system and the urinary system were prominent as excretory routes of the radiolabeled complex.Conclusion Considering obtained results, 177Lu-doxycycline complex, due to its excellent electrochemical and biological characteristics, with emphasis on the binding ability to DNA via intercalative interaction as well as significant accumulation in the tumor, is suitable for further in vivo studies to investigate its potential use in cancer treatment.
T2  - International Journal of Radiation Biology
T1  - 177Lu-doxycycline as potential radiopharmaceutical: electrochemical characterization, radiolabeling, and biodistribution in tumor-bearing mice
SP  - 1
EP  - 9
DO  - 10.1080/09553002.2021.1976864
ER  - 
@article{
author = "Milanović, Zorana and Janković, Drina and Vranješ-Đurić, Sanja and Radović, Magdalena and Prijović, Željko and Zavišić, Gordana and Perić, Marko and Stanković, Dalibor M. and Mirković, Marija D.",
year = "2021",
abstract = "Purpose Recent studies with doxycycline as adjuvant therapy to conventional chemotherapy have shown promising results in cancer therapy. The current study aimed to examine the capability of 177Lu-labeled tetracycline ligand, doxycycline hyclate, to use as an anticancer agent.Materials and methods Doxycycline was radiolabeled with beta-emitting radioisotope 177Lu. Complex formation and its interaction with DNA were investigated electrochemically. Binding of 177Lu-doxycycline to CT 26 cell line was done. Biodistribution of 177Lu-doxycycline was examined in healthy Wistar rats and CT26 colon carcinoma tumor-bearing mice by i.v. and i.p. administration, respectively.Results Doxycycline hyclate was successfully radiolabeled with 177Lu in high radiolabeling yield (>99%). The radiolabeled complex was stable in vitro in saline and human serum over 72 h. Non-radioactive Lu-doxycycline complex formation was demonstrated electrochemically as well. Intercalative interactions of the doxycycline and Lu-doxycycline with DNA were proved using simultaneously spectrophotometric and electrochemical methods. The binding of the radiolabeled complex with plasma proteins was 4.0 ± 0.4%. The partition coefficient showed the lipophilic nature of the complex similar to the free ligand. The binding curve demonstrates binding from 0.1 nM concentrations of 177Lu-doxycycline, with half-binding estimated ∼100 nM. Biodistribution studies of 177Lu-doxycycline in CT26 colon tumor-bearing mice showed a satisfactory accumulation rate in the tumor (2.88 ± 0.85% ID/g) 3 h after intraperitoneal injection. Both the hepatobiliary system and the urinary system were prominent as excretory routes of the radiolabeled complex.Conclusion Considering obtained results, 177Lu-doxycycline complex, due to its excellent electrochemical and biological characteristics, with emphasis on the binding ability to DNA via intercalative interaction as well as significant accumulation in the tumor, is suitable for further in vivo studies to investigate its potential use in cancer treatment.",
journal = "International Journal of Radiation Biology",
title = "177Lu-doxycycline as potential radiopharmaceutical: electrochemical characterization, radiolabeling, and biodistribution in tumor-bearing mice",
pages = "1-9",
doi = "10.1080/09553002.2021.1976864"
}
Milanović, Z., Janković, D., Vranješ-Đurić, S., Radović, M., Prijović, Ž., Zavišić, G., Perić, M., Stanković, D. M.,& Mirković, M. D.. (2021). 177Lu-doxycycline as potential radiopharmaceutical: electrochemical characterization, radiolabeling, and biodistribution in tumor-bearing mice. in International Journal of Radiation Biology, 1-9.
https://doi.org/10.1080/09553002.2021.1976864
Milanović Z, Janković D, Vranješ-Đurić S, Radović M, Prijović Ž, Zavišić G, Perić M, Stanković DM, Mirković MD. 177Lu-doxycycline as potential radiopharmaceutical: electrochemical characterization, radiolabeling, and biodistribution in tumor-bearing mice. in International Journal of Radiation Biology. 2021;:1-9.
doi:10.1080/09553002.2021.1976864 .
Milanović, Zorana, Janković, Drina, Vranješ-Đurić, Sanja, Radović, Magdalena, Prijović, Željko, Zavišić, Gordana, Perić, Marko, Stanković, Dalibor M., Mirković, Marija D., "177Lu-doxycycline as potential radiopharmaceutical: electrochemical characterization, radiolabeling, and biodistribution in tumor-bearing mice" in International Journal of Radiation Biology (2021):1-9,
https://doi.org/10.1080/09553002.2021.1976864 . .
1

Aminosilanized flower-structured superparamagnetic iron oxide nanoparticles coupled to 131I-labeled CC49 antibody for combined radionuclide and hyperthermia therapy of cancer

Stanković, Aljoša; Mihailović, Jasna; Mirković, Marija D.; Radović, Magdalena; Milanović, Zorana; Ognjanović, Miloš; Janković, Drina; Antić, Bratislav; Mijović, Milica; Vranješ-Đurić, Sanja; Prijović, Željko

(2020)

TY  - JOUR
AU  - Stanković, Aljoša
AU  - Mihailović, Jasna
AU  - Mirković, Marija D.
AU  - Radović, Magdalena
AU  - Milanović, Zorana
AU  - Ognjanović, Miloš
AU  - Janković, Drina
AU  - Antić, Bratislav
AU  - Mijović, Milica
AU  - Vranješ-Đurić, Sanja
AU  - Prijović, Željko
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9117
AB  - Combined radionuclide therapy with magnetic nanoparticles-mediated hyperthermia has been under research focus as a promising tumor therapy approach. The objective of this study was to investigate the potential of 131I-radiolabeled superparamagnetic iron oxide nanoparticles (SPIONs) prepared as the ~40 nm flower-shaped structures with excellent heating efficiency (specific absorption rate at H0 = 15.9 kA∙m−1 and resonant frequency of 252 kHz was 123.1 W∙g−1) for nano-brachytherapy of tumors. 131I-radiolabeled CC49 antibody attached to SPIONs via reactive groups of 3-aminopropyltriethoxysilane (APTES) provided specificity and long-lasting localized retention after their intratumoral application into LS174T human colon adenocarcinoma xenografts in NOD-SCID mice. The results demonstrate feasibility and effectiveness of magnetic hyperthermia (HT), radionuclide therapy (RT) and their combination (HT + RT) in treating cancer in xenograft models. Combined therapy approach induced a significant (p < 0.01) tumor growth suppression in comparison to untreated groups presented by the tumor volume inhibitory rate (TVIR): 54.38%, 68.77%, 73.00% for HT, RT and HT + RT, respectively in comparison to untreated group and 48.31%, 64,62% and 69,41%, respectively, for the SPIONs-only injected group. Histopathology analysis proved the necrosis and apoptosis in treated tumors without general toxicity. Obtained data support the idea that nano-brachytherapy combined with hyperthermia is a promising approach for effective cancer treatment.
T2  - International Journal of Pharmaceutics
T1  - Aminosilanized flower-structured superparamagnetic iron oxide nanoparticles coupled to 131I-labeled CC49 antibody for combined radionuclide and hyperthermia therapy of cancer
VL  - 587
SP  - 119628
DO  - 10.1016/j.ijpharm.2020.119628
ER  - 
@article{
author = "Stanković, Aljoša and Mihailović, Jasna and Mirković, Marija D. and Radović, Magdalena and Milanović, Zorana and Ognjanović, Miloš and Janković, Drina and Antić, Bratislav and Mijović, Milica and Vranješ-Đurić, Sanja and Prijović, Željko",
year = "2020",
abstract = "Combined radionuclide therapy with magnetic nanoparticles-mediated hyperthermia has been under research focus as a promising tumor therapy approach. The objective of this study was to investigate the potential of 131I-radiolabeled superparamagnetic iron oxide nanoparticles (SPIONs) prepared as the ~40 nm flower-shaped structures with excellent heating efficiency (specific absorption rate at H0 = 15.9 kA∙m−1 and resonant frequency of 252 kHz was 123.1 W∙g−1) for nano-brachytherapy of tumors. 131I-radiolabeled CC49 antibody attached to SPIONs via reactive groups of 3-aminopropyltriethoxysilane (APTES) provided specificity and long-lasting localized retention after their intratumoral application into LS174T human colon adenocarcinoma xenografts in NOD-SCID mice. The results demonstrate feasibility and effectiveness of magnetic hyperthermia (HT), radionuclide therapy (RT) and their combination (HT + RT) in treating cancer in xenograft models. Combined therapy approach induced a significant (p < 0.01) tumor growth suppression in comparison to untreated groups presented by the tumor volume inhibitory rate (TVIR): 54.38%, 68.77%, 73.00% for HT, RT and HT + RT, respectively in comparison to untreated group and 48.31%, 64,62% and 69,41%, respectively, for the SPIONs-only injected group. Histopathology analysis proved the necrosis and apoptosis in treated tumors without general toxicity. Obtained data support the idea that nano-brachytherapy combined with hyperthermia is a promising approach for effective cancer treatment.",
journal = "International Journal of Pharmaceutics",
title = "Aminosilanized flower-structured superparamagnetic iron oxide nanoparticles coupled to 131I-labeled CC49 antibody for combined radionuclide and hyperthermia therapy of cancer",
volume = "587",
pages = "119628",
doi = "10.1016/j.ijpharm.2020.119628"
}
Stanković, A., Mihailović, J., Mirković, M. D., Radović, M., Milanović, Z., Ognjanović, M., Janković, D., Antić, B., Mijović, M., Vranješ-Đurić, S.,& Prijović, Ž.. (2020). Aminosilanized flower-structured superparamagnetic iron oxide nanoparticles coupled to 131I-labeled CC49 antibody for combined radionuclide and hyperthermia therapy of cancer. in International Journal of Pharmaceutics, 587, 119628.
https://doi.org/10.1016/j.ijpharm.2020.119628
Stanković A, Mihailović J, Mirković MD, Radović M, Milanović Z, Ognjanović M, Janković D, Antić B, Mijović M, Vranješ-Đurić S, Prijović Ž. Aminosilanized flower-structured superparamagnetic iron oxide nanoparticles coupled to 131I-labeled CC49 antibody for combined radionuclide and hyperthermia therapy of cancer. in International Journal of Pharmaceutics. 2020;587:119628.
doi:10.1016/j.ijpharm.2020.119628 .
Stanković, Aljoša, Mihailović, Jasna, Mirković, Marija D., Radović, Magdalena, Milanović, Zorana, Ognjanović, Miloš, Janković, Drina, Antić, Bratislav, Mijović, Milica, Vranješ-Đurić, Sanja, Prijović, Željko, "Aminosilanized flower-structured superparamagnetic iron oxide nanoparticles coupled to 131I-labeled CC49 antibody for combined radionuclide and hyperthermia therapy of cancer" in International Journal of Pharmaceutics, 587 (2020):119628,
https://doi.org/10.1016/j.ijpharm.2020.119628 . .
21
6
21

99m Tc-, 90 Y-, and 177 Lu-Labeled Iron Oxide Nanoflowers Designed for Potential Use in Dual Magnetic Hyperthermia/Radionuclide Cancer Therapy and Diagnosis

Ognjanović, Miloš; Radović, Magdalena; Mirković, Marija D.; Prijović, Željko; Puerto Morales, Maria del; Čeh, Miran; Vranješ-Đurić, Sanja; Antić, Bratislav

(2019)

TY  - JOUR
AU  - Ognjanović, Miloš
AU  - Radović, Magdalena
AU  - Mirković, Marija D.
AU  - Prijović, Željko
AU  - Puerto Morales, Maria del
AU  - Čeh, Miran
AU  - Vranješ-Đurić, Sanja
AU  - Antić, Bratislav
PY  - 2019
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8622
AB  - Development of a complex based on iron oxide nanoparticles (IONPs) for diagnosis and dual magnetic hyperthermia/radionuclide cancer therapy accomplishing high yields of radiolabeling and great magnetic heat induction is still a challenge. We report here the synthesis of citric acid, poly(acrylic acid) (PAA) and poly(ethylene glycol) coated IONPs and their labeling with three radionuclides, namely, technetium (99mTc), yttrium (90Y), and lutetium (177Lu), aiming at potential use in cancer diagnosis and therapy. Polyol-synthesized IONPs are a flowerlike structure with 13.5 nm spherically shaped cores and 24.8 nm diameter. PAA-coated nanoparticles (PAA@IONP) showed the best characteristics such as easy radiolabeling with very high yields (&gt;97.5%) with all three radionuclides, and excellent in vitro stabilities with less than 10% of radionuclides detaching after 24 h. Heating ability of PAA@IONP in an alternating external magnetic field showed intrinsic loss power value of 7.3 nH m2/kg, which is one of higher reported values. Additionally, PAA@IONP itself presented no significant cytotoxicity to the CT-26 cancer cells, reaching IC50 at 60 μg/mL. However, under the external magnetic field, they show hyperthermia-mediated cells killing, which correlated with the magnetic field strength and time of exposure. Since PAA@IONP are easy to prepare, biocompatible, and with excellent magnetic heat induction, these nanoparticles radiolabeled with high-energy beta emitters 90Y and 177Lu have valuable potential as agent for dual magnetic hyperthermia/radionuclide therapy, while radiolabeled with 99mTc could be used in diagnostic imaging. Copyright © 2019 American Chemical Society.
T2  - ACS Applied Materials and Interfaces
T1  - 99m Tc-, 90 Y-, and 177 Lu-Labeled Iron Oxide Nanoflowers Designed for Potential Use in Dual Magnetic Hyperthermia/Radionuclide Cancer Therapy and Diagnosis
VL  - 11
IS  - 44
SP  - 41109
EP  - 41117
DO  - 10.1021/acsami.9b16428
ER  - 
@article{
author = "Ognjanović, Miloš and Radović, Magdalena and Mirković, Marija D. and Prijović, Željko and Puerto Morales, Maria del and Čeh, Miran and Vranješ-Đurić, Sanja and Antić, Bratislav",
year = "2019",
abstract = "Development of a complex based on iron oxide nanoparticles (IONPs) for diagnosis and dual magnetic hyperthermia/radionuclide cancer therapy accomplishing high yields of radiolabeling and great magnetic heat induction is still a challenge. We report here the synthesis of citric acid, poly(acrylic acid) (PAA) and poly(ethylene glycol) coated IONPs and their labeling with three radionuclides, namely, technetium (99mTc), yttrium (90Y), and lutetium (177Lu), aiming at potential use in cancer diagnosis and therapy. Polyol-synthesized IONPs are a flowerlike structure with 13.5 nm spherically shaped cores and 24.8 nm diameter. PAA-coated nanoparticles (PAA@IONP) showed the best characteristics such as easy radiolabeling with very high yields (&gt;97.5%) with all three radionuclides, and excellent in vitro stabilities with less than 10% of radionuclides detaching after 24 h. Heating ability of PAA@IONP in an alternating external magnetic field showed intrinsic loss power value of 7.3 nH m2/kg, which is one of higher reported values. Additionally, PAA@IONP itself presented no significant cytotoxicity to the CT-26 cancer cells, reaching IC50 at 60 μg/mL. However, under the external magnetic field, they show hyperthermia-mediated cells killing, which correlated with the magnetic field strength and time of exposure. Since PAA@IONP are easy to prepare, biocompatible, and with excellent magnetic heat induction, these nanoparticles radiolabeled with high-energy beta emitters 90Y and 177Lu have valuable potential as agent for dual magnetic hyperthermia/radionuclide therapy, while radiolabeled with 99mTc could be used in diagnostic imaging. Copyright © 2019 American Chemical Society.",
journal = "ACS Applied Materials and Interfaces",
title = "99m Tc-, 90 Y-, and 177 Lu-Labeled Iron Oxide Nanoflowers Designed for Potential Use in Dual Magnetic Hyperthermia/Radionuclide Cancer Therapy and Diagnosis",
volume = "11",
number = "44",
pages = "41109-41117",
doi = "10.1021/acsami.9b16428"
}
Ognjanović, M., Radović, M., Mirković, M. D., Prijović, Ž., Puerto Morales, M. d., Čeh, M., Vranješ-Đurić, S.,& Antić, B.. (2019). 99m Tc-, 90 Y-, and 177 Lu-Labeled Iron Oxide Nanoflowers Designed for Potential Use in Dual Magnetic Hyperthermia/Radionuclide Cancer Therapy and Diagnosis. in ACS Applied Materials and Interfaces, 11(44), 41109-41117.
https://doi.org/10.1021/acsami.9b16428
Ognjanović M, Radović M, Mirković MD, Prijović Ž, Puerto Morales MD, Čeh M, Vranješ-Đurić S, Antić B. 99m Tc-, 90 Y-, and 177 Lu-Labeled Iron Oxide Nanoflowers Designed for Potential Use in Dual Magnetic Hyperthermia/Radionuclide Cancer Therapy and Diagnosis. in ACS Applied Materials and Interfaces. 2019;11(44):41109-41117.
doi:10.1021/acsami.9b16428 .
Ognjanović, Miloš, Radović, Magdalena, Mirković, Marija D., Prijović, Željko, Puerto Morales, Maria del, Čeh, Miran, Vranješ-Đurić, Sanja, Antić, Bratislav, "99m Tc-, 90 Y-, and 177 Lu-Labeled Iron Oxide Nanoflowers Designed for Potential Use in Dual Magnetic Hyperthermia/Radionuclide Cancer Therapy and Diagnosis" in ACS Applied Materials and Interfaces, 11, no. 44 (2019):41109-41117,
https://doi.org/10.1021/acsami.9b16428 . .
49
21
41

Bifunctional (Zn,Fe)3O4 nanoparticles: Tuning their efficiency for potential application in reagentless glucose biosensors and magnetic hyperthermia

Ognjanović, Miloš; Stanković, Dalibor M.; Ming, Yue; Zhang, Hongguo; Jančar, Boštjan; Dojčinović, Biljana P.; Prijović, Željko; Antić, Bratislav

(2019)

TY  - JOUR
AU  - Ognjanović, Miloš
AU  - Stanković, Dalibor M.
AU  - Ming, Yue
AU  - Zhang, Hongguo
AU  - Jančar, Boštjan
AU  - Dojčinović, Biljana P.
AU  - Prijović, Željko
AU  - Antić, Bratislav
PY  - 2019
UR  - https://linkinghub.elsevier.com/retrieve/pii/S0925838818340684
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7942
AB  - In a new approach based on a two-step procedure, co-precipitation method followed by hydrothermal treatment in a microwave field, Zn-substituted Fe3O4 nanoparticles (ZnxFe3-xO4) were synthesized. Results of XRD, FT–IR and TEM analysis clearly demonstrate that nanoparticles were single phase, crystallizing in the spinel structure type (S.G. Fd3¯m) with crystallite size in the range of 2–20 nm, which strongly depends on Zn concentration. The produced nanoparticles were used for fabrication of modified carbon paste electrodes as a novel system for electrochemical non-enzymatic glucose detection. It was found that the increase of zinc concentration up to the value of x = 0.56 (Zn0.56Fe2.44O4) of as-prepared nanoparticles was followed with an increase of a performance of the modified carbon paste electrode toward glucose detection. Linear working range from 0.1 to 2 mM was obtained with detection limit of 0.03 mM, and with fast response time (<3 s). Proposed sensor was successfully applied for the determination of glucose level in real samples with satisfactory recovery. The synthesized zinc-ferrite samples were also tested as potential heating agents in magnetic hyperthermia. The heating ability (SAR value) increases with x value, reaching maximum for x = 0.37. This is correlated with changes of particle size and magnetic characteristics which strongly depend on Zn concentration. © 2018 Elsevier B.V.
T2  - Journal of Alloys and Compounds
T1  - Bifunctional (Zn,Fe)3O4 nanoparticles: Tuning their efficiency for potential application in reagentless glucose biosensors and magnetic hyperthermia
VL  - 777
SP  - 454
EP  - 462
DO  - 10.1016/j.jallcom.2018.10.369
ER  - 
@article{
author = "Ognjanović, Miloš and Stanković, Dalibor M. and Ming, Yue and Zhang, Hongguo and Jančar, Boštjan and Dojčinović, Biljana P. and Prijović, Željko and Antić, Bratislav",
year = "2019",
abstract = "In a new approach based on a two-step procedure, co-precipitation method followed by hydrothermal treatment in a microwave field, Zn-substituted Fe3O4 nanoparticles (ZnxFe3-xO4) were synthesized. Results of XRD, FT–IR and TEM analysis clearly demonstrate that nanoparticles were single phase, crystallizing in the spinel structure type (S.G. Fd3¯m) with crystallite size in the range of 2–20 nm, which strongly depends on Zn concentration. The produced nanoparticles were used for fabrication of modified carbon paste electrodes as a novel system for electrochemical non-enzymatic glucose detection. It was found that the increase of zinc concentration up to the value of x = 0.56 (Zn0.56Fe2.44O4) of as-prepared nanoparticles was followed with an increase of a performance of the modified carbon paste electrode toward glucose detection. Linear working range from 0.1 to 2 mM was obtained with detection limit of 0.03 mM, and with fast response time (<3 s). Proposed sensor was successfully applied for the determination of glucose level in real samples with satisfactory recovery. The synthesized zinc-ferrite samples were also tested as potential heating agents in magnetic hyperthermia. The heating ability (SAR value) increases with x value, reaching maximum for x = 0.37. This is correlated with changes of particle size and magnetic characteristics which strongly depend on Zn concentration. © 2018 Elsevier B.V.",
journal = "Journal of Alloys and Compounds",
title = "Bifunctional (Zn,Fe)3O4 nanoparticles: Tuning their efficiency for potential application in reagentless glucose biosensors and magnetic hyperthermia",
volume = "777",
pages = "454-462",
doi = "10.1016/j.jallcom.2018.10.369"
}
Ognjanović, M., Stanković, D. M., Ming, Y., Zhang, H., Jančar, B., Dojčinović, B. P., Prijović, Ž.,& Antić, B.. (2019). Bifunctional (Zn,Fe)3O4 nanoparticles: Tuning their efficiency for potential application in reagentless glucose biosensors and magnetic hyperthermia. in Journal of Alloys and Compounds, 777, 454-462.
https://doi.org/10.1016/j.jallcom.2018.10.369
Ognjanović M, Stanković DM, Ming Y, Zhang H, Jančar B, Dojčinović BP, Prijović Ž, Antić B. Bifunctional (Zn,Fe)3O4 nanoparticles: Tuning their efficiency for potential application in reagentless glucose biosensors and magnetic hyperthermia. in Journal of Alloys and Compounds. 2019;777:454-462.
doi:10.1016/j.jallcom.2018.10.369 .
Ognjanović, Miloš, Stanković, Dalibor M., Ming, Yue, Zhang, Hongguo, Jančar, Boštjan, Dojčinović, Biljana P., Prijović, Željko, Antić, Bratislav, "Bifunctional (Zn,Fe)3O4 nanoparticles: Tuning their efficiency for potential application in reagentless glucose biosensors and magnetic hyperthermia" in Journal of Alloys and Compounds, 777 (2019):454-462,
https://doi.org/10.1016/j.jallcom.2018.10.369 . .
28
15
26

A Voltammetric Sensor Based on MgFe2O4 Decorated on Reduced Graphene Oxide-modified Electrode for Sensitive and Simultaneous Determination of Catechol and Hydroquinone

Ognjanović, Miloš; Stanković, Dalibor M.; Fabian, Martin; Vukadinović, Aleksandar; Prijović, Željko; Dojčinović, Biljana P.; Antić, Bratislav

(2018)

TY  - JOUR
AU  - Ognjanović, Miloš
AU  - Stanković, Dalibor M.
AU  - Fabian, Martin
AU  - Vukadinović, Aleksandar
AU  - Prijović, Željko
AU  - Dojčinović, Biljana P.
AU  - Antić, Bratislav
PY  - 2018
UR  - http://doi.wiley.com/10.1002/elan.201800357
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7961
AB  - In this work facile one step synthesis of magnesium ferrite (MgFe2O4) nanoparticles decorated on reduced graphene oxide (MgFe@RGO) using a microwave assisted hydrothermal procedure is reported. The synthesized material was characterized with help of several techniques and applied for the modification of glassy carbon electrode. Such prepared electrode was utilized for successive simultaneous detection of structurally similar compounds, 1,2- and 1,4-dihydroxibenzenes (catechol (CC) and hydroquinone (HQ)), using differential pulse voltammetry technique. It was found that oxidation current increases linearly with the concentrations of both investigated compounds. Detection limits for both species are ≤0.31 μM. The best analytical response in the presence of both CC and HQ, taking into account peak shape and peak current, was obtained at pH 5.6 utilizing acetate buffer solution. The often-presented species in the surface waters as well as gallic acid and caffeine do not interfere with determination of CC and HQ, while ascorbic acid shows high interference. The method is successfully applied for detection of catechol and hydroquinone in real samples analyses. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
T2  - Electroanalysis
T1  - A Voltammetric Sensor Based on MgFe2O4 Decorated on Reduced Graphene Oxide-modified Electrode for Sensitive and Simultaneous Determination of Catechol and Hydroquinone
VL  - 30
IS  - 11
SP  - 2620
EP  - 2627
DO  - 10.1002/elan.201800357
ER  - 
@article{
author = "Ognjanović, Miloš and Stanković, Dalibor M. and Fabian, Martin and Vukadinović, Aleksandar and Prijović, Željko and Dojčinović, Biljana P. and Antić, Bratislav",
year = "2018",
abstract = "In this work facile one step synthesis of magnesium ferrite (MgFe2O4) nanoparticles decorated on reduced graphene oxide (MgFe@RGO) using a microwave assisted hydrothermal procedure is reported. The synthesized material was characterized with help of several techniques and applied for the modification of glassy carbon electrode. Such prepared electrode was utilized for successive simultaneous detection of structurally similar compounds, 1,2- and 1,4-dihydroxibenzenes (catechol (CC) and hydroquinone (HQ)), using differential pulse voltammetry technique. It was found that oxidation current increases linearly with the concentrations of both investigated compounds. Detection limits for both species are ≤0.31 μM. The best analytical response in the presence of both CC and HQ, taking into account peak shape and peak current, was obtained at pH 5.6 utilizing acetate buffer solution. The often-presented species in the surface waters as well as gallic acid and caffeine do not interfere with determination of CC and HQ, while ascorbic acid shows high interference. The method is successfully applied for detection of catechol and hydroquinone in real samples analyses. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim",
journal = "Electroanalysis",
title = "A Voltammetric Sensor Based on MgFe2O4 Decorated on Reduced Graphene Oxide-modified Electrode for Sensitive and Simultaneous Determination of Catechol and Hydroquinone",
volume = "30",
number = "11",
pages = "2620-2627",
doi = "10.1002/elan.201800357"
}
Ognjanović, M., Stanković, D. M., Fabian, M., Vukadinović, A., Prijović, Ž., Dojčinović, B. P.,& Antić, B.. (2018). A Voltammetric Sensor Based on MgFe2O4 Decorated on Reduced Graphene Oxide-modified Electrode for Sensitive and Simultaneous Determination of Catechol and Hydroquinone. in Electroanalysis, 30(11), 2620-2627.
https://doi.org/10.1002/elan.201800357
Ognjanović M, Stanković DM, Fabian M, Vukadinović A, Prijović Ž, Dojčinović BP, Antić B. A Voltammetric Sensor Based on MgFe2O4 Decorated on Reduced Graphene Oxide-modified Electrode for Sensitive and Simultaneous Determination of Catechol and Hydroquinone. in Electroanalysis. 2018;30(11):2620-2627.
doi:10.1002/elan.201800357 .
Ognjanović, Miloš, Stanković, Dalibor M., Fabian, Martin, Vukadinović, Aleksandar, Prijović, Željko, Dojčinović, Biljana P., Antić, Bratislav, "A Voltammetric Sensor Based on MgFe2O4 Decorated on Reduced Graphene Oxide-modified Electrode for Sensitive and Simultaneous Determination of Catechol and Hydroquinone" in Electroanalysis, 30, no. 11 (2018):2620-2627,
https://doi.org/10.1002/elan.201800357 . .
21
12
19