On the driving forces behind the change of reduction potentials and the prediction of redox properties through analysis of EPR hyperfine couplings in VO(acac)2pyr and VO(acac)2 imidazole complexes. A DFT study
Samo za registrovane korisnike
2024
Autori
Vranješ-Đurić, Sanja
Milanović, Zorana
Mirković, Marija D.
Radović, Magdalena
Perić, Marko R.
Članak u časopisu (Recenzirana verzija)
Metapodaci
Prikaz svih podataka o dokumentuApstrakt
The use of vanadium complexes for potential applications in medicine largely depends on the structural properties of the complex itself, as well as on the electronic configuration of the metal and its oxidation state. When the vanadium complex binds to biomolecules or by binding solvent molecules to the complex, there is a change in the structure but also a change in the redox properties of the complex. Using theoretical methods, especially Density Functional theory (DFT), it is possible to determine which factors influence changes in the redox properties of the complex. Furthermore, by calculating the Electron Paramagnetic Resonance (EPR) constants of hyperfine coupling, it is possible to obtain not only data on the electronic configuration, but also to predict changes in redox properties upon changes in the structure of the complex. DFT results show that the binding of pyridine or imidazole to the VO(acac)2 complex leads to a lowering of the redox potential. The largest changes in th...e redox potential were observed in the case when the incoming ligand binds in a cis position relative to the V==O bond.
Ključne reči:
EPR / Vanadium complexes / Redox properties / MetalloenzymesIzvor:
Polyhedron, 2024, 259, 117049-Finansiranje / projekti:
- Ministarstvo nauke, tehnološkog razvoja i inovacija Republike Srbije, institucionalno finansiranje - 200017 (Univerzitet u Beogradu, Institut za nuklearne nauke Vinča, Beograd-Vinča) (RS-MESTD-inst-2020-200017)
- 2023-07-17 RadioMag - Design of RADIOactive MAGnetic nanoconstructs for tumour therapy by synergy of nanobrachytherapy and magnetic hyperthermia (RS-ScienceFundRS-Prizma2023_TT-7282)
Napomena:
- This is the peer-reviewed version of the article: Vranješ-Đurić, S., Milanović, Z., Mirković, M., Radović, M., & Perić, M. (2024). On the driving forces behind the change of reduction potentials and the prediction of redox properties through analysis of EPR hyperfine couplings in VO (acac) 2pyr and VO (acac) 2 imidazole complexes. A DFT study. Polyhedron, 259, 117049. http://dx.doi.org/10.1016/j.poly.2024.117049
Povezane informacije:
- Druga verzija
http://dx.doi.org/10.1016/j.poly.2024.117049 - Druga verzija
https://vinar.vin.bg.ac.rs/handle/123456789/13264
Kolekcije
Institucija/grupa
VinčaTY - JOUR AU - Vranješ-Đurić, Sanja AU - Milanović, Zorana AU - Mirković, Marija D. AU - Radović, Magdalena AU - Perić, Marko R. PY - 2024 UR - https://vinar.vin.bg.ac.rs/handle/123456789/14981 AB - The use of vanadium complexes for potential applications in medicine largely depends on the structural properties of the complex itself, as well as on the electronic configuration of the metal and its oxidation state. When the vanadium complex binds to biomolecules or by binding solvent molecules to the complex, there is a change in the structure but also a change in the redox properties of the complex. Using theoretical methods, especially Density Functional theory (DFT), it is possible to determine which factors influence changes in the redox properties of the complex. Furthermore, by calculating the Electron Paramagnetic Resonance (EPR) constants of hyperfine coupling, it is possible to obtain not only data on the electronic configuration, but also to predict changes in redox properties upon changes in the structure of the complex. DFT results show that the binding of pyridine or imidazole to the VO(acac)2 complex leads to a lowering of the redox potential. The largest changes in the redox potential were observed in the case when the incoming ligand binds in a cis position relative to the V==O bond. T2 - Polyhedron T1 - On the driving forces behind the change of reduction potentials and the prediction of redox properties through analysis of EPR hyperfine couplings in VO(acac)2pyr and VO(acac)2 imidazole complexes. A DFT study VL - 259 SP - 117049 DO - 10.1016/j.poly.2024.117049 ER -
@article{
author = "Vranješ-Đurić, Sanja and Milanović, Zorana and Mirković, Marija D. and Radović, Magdalena and Perić, Marko R.",
year = "2024",
abstract = "The use of vanadium complexes for potential applications in medicine largely depends on the structural properties of the complex itself, as well as on the electronic configuration of the metal and its oxidation state. When the vanadium complex binds to biomolecules or by binding solvent molecules to the complex, there is a change in the structure but also a change in the redox properties of the complex. Using theoretical methods, especially Density Functional theory (DFT), it is possible to determine which factors influence changes in the redox properties of the complex. Furthermore, by calculating the Electron Paramagnetic Resonance (EPR) constants of hyperfine coupling, it is possible to obtain not only data on the electronic configuration, but also to predict changes in redox properties upon changes in the structure of the complex. DFT results show that the binding of pyridine or imidazole to the VO(acac)2 complex leads to a lowering of the redox potential. The largest changes in the redox potential were observed in the case when the incoming ligand binds in a cis position relative to the V==O bond.",
journal = "Polyhedron",
title = "On the driving forces behind the change of reduction potentials and the prediction of redox properties through analysis of EPR hyperfine couplings in VO(acac)2pyr and VO(acac)2 imidazole complexes. A DFT study",
volume = "259",
pages = "117049",
doi = "10.1016/j.poly.2024.117049"
}
Vranješ-Đurić, S., Milanović, Z., Mirković, M. D., Radović, M.,& Perić, M. R.. (2024). On the driving forces behind the change of reduction potentials and the prediction of redox properties through analysis of EPR hyperfine couplings in VO(acac)2pyr and VO(acac)2 imidazole complexes. A DFT study. in Polyhedron, 259, 117049. https://doi.org/10.1016/j.poly.2024.117049
Vranješ-Đurić S, Milanović Z, Mirković MD, Radović M, Perić MR. On the driving forces behind the change of reduction potentials and the prediction of redox properties through analysis of EPR hyperfine couplings in VO(acac)2pyr and VO(acac)2 imidazole complexes. A DFT study. in Polyhedron. 2024;259:117049. doi:10.1016/j.poly.2024.117049 .
Vranješ-Đurić, Sanja, Milanović, Zorana, Mirković, Marija D., Radović, Magdalena, Perić, Marko R., "On the driving forces behind the change of reduction potentials and the prediction of redox properties through analysis of EPR hyperfine couplings in VO(acac)2pyr and VO(acac)2 imidazole complexes. A DFT study" in Polyhedron, 259 (2024):117049, https://doi.org/10.1016/j.poly.2024.117049 . .

