VinaR - Repozitorijum Instituta za nuklearne nauke Vinča
    • English
    • Српски
    • Српски (Serbia)
  • Srpski (latinica) 
    • Engleski
    • Srpski (ćirilica)
    • Srpski (latinica)
  • Prijava
Pregled zapisa 
  •   VinaR
  • Vinča
  • Radovi istraživača
  • Pregled zapisa
  •   VinaR
  • Vinča
  • Radovi istraživača
  • Pregled zapisa
JavaScript is disabled for your browser. Some features of this site may not work without it.

Carbonized Apples and Quinces Stillage for Electromagnetic Shielding

Thumbnail
2024
Preuzimanje 🢃
Main article [PDF] (6.000Mb)
Autori
Milenković, Mila
Saeed, Warda
Yasir, Muhammad
Milivojević, Dušan
Azmy, Ali
Nassar, Kamal E. S.
Syrgiannis, Zois
Spanopoulos, Ioannis
Bajuk-Bogdanović, Danica
Maletić, Snežana
Kerkez, Đurđa
Barudžija, Tanja
Jovanović, Svetlana
Članak u časopisu (Objavljena verzija)
Metapodaci
Prikaz svih podataka o dokumentu
Apstrakt
Electromagnetic waves (EMWs) have become an integral part of our daily lives, but they are causing a new form of environmental pollution, manifesting as electromagnetic interference (EMI) and radio frequency signal leakage. As a result, the demand for innovative, eco-friendly materials capable of blocking EMWs has escalated in the past decade, underscoring the significance of our research. In the realm of modern science, the creation of new materials must consider the starting materials, production costs, energy usage, and the potential for air, water, and soil pollution. Herein, we utilized biowaste materials generated during the distillation of fruit schnapps. The biowaste from apple and quince schnapps distillation was used as starting material, mixed with KOH, and carbonized at 850 °C, in a nitrogen atmosphere. The structure of samples was investigated using various techniques (infrared, Raman, energy-dispersive X-ray, X-ray photoelectron spectroscopies, thermogravimetric analysis,... BET surface area analyzer). Encouragingly, these materials demonstrated the ability to block EMWs within a frequency range of 8 to 12 GHz. Shielding efficiency was measured using waveguide adapters connected to ports (1 and 2) of the vector network analyzer using radio-frequency coaxial cables. At a frequency of 10 GHz, carbonized biowaste blocks 78.5% of the incident electromagnetic wave.

Ključne reči:
graphene / graphene oxide / biowaste / carbonization / electromagnetic interference shielding
Izvor:
Nanomaterials, 2024, 14, 23, 1882-
Finansiranje / projekti:
  • 2023-07-17 GrInShield - Twinning for new graphene-based composites in electromagnetic interference shielding (EU-HE-CSA-101079151)
  • Ministarstvo nauke, tehnološkog razvoja i inovacija Republike Srbije, institucionalno finansiranje - 200017 (Univerzitet u Beogradu, Institut za nuklearne nauke Vinča, Beograd-Vinča) (RS-MESTD-inst-2020-200017)
  • Ministarstvo nauke, tehnološkog razvoja i inovacija Republike Srbije, institucionalno finansiranje - 200146 (Univerzitet u Beogradu, Fakultet za fizičku hemiju) (RS-MESTD-inst-2020-200146)
  • ACS Petroleum Research Fund under Doctoral New Investigator [Grant 65721-DNI5]

DOI: 10.3390/nano14231882

ISSN: 2079-4991

Scopus: 2-s2.0-85211820928
[ Google Scholar ]
3
URI
https://vinar.vin.bg.ac.rs/handle/123456789/14120
Kolekcije
  • Radovi istraživača
  • GrInShield
Institucija/grupa
Vinča
TY  - JOUR
AU  - Milenković, Mila
AU  - Saeed, Warda
AU  - Yasir, Muhammad
AU  - Milivojević, Dušan
AU  - Azmy, Ali
AU  - Nassar, Kamal E. S.
AU  - Syrgiannis, Zois
AU  - Spanopoulos, Ioannis
AU  - Bajuk-Bogdanović, Danica
AU  - Maletić, Snežana
AU  - Kerkez, Đurđa
AU  - Barudžija, Tanja
AU  - Jovanović, Svetlana
PY  - 2024
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/14120
AB  - Electromagnetic waves (EMWs) have become an integral part of our daily lives, but they are causing a new form of environmental pollution, manifesting as electromagnetic interference (EMI) and radio frequency signal leakage. As a result, the demand for innovative, eco-friendly materials capable of blocking EMWs has escalated in the past decade, underscoring the significance of our research. In the realm of modern science, the creation of new materials must consider the starting materials, production costs, energy usage, and the potential for air, water, and soil pollution. Herein, we utilized biowaste materials generated during the distillation of fruit schnapps. The biowaste from apple and quince schnapps distillation was used as starting material, mixed with KOH, and carbonized at 850 °C, in a nitrogen atmosphere. The structure of samples was investigated using various techniques (infrared, Raman, energy-dispersive X-ray, X-ray photoelectron spectroscopies, thermogravimetric analysis, BET surface area analyzer). Encouragingly, these materials demonstrated the ability to block EMWs within a frequency range of 8 to 12 GHz. Shielding efficiency was measured using waveguide adapters connected to ports (1 and 2) of the vector network analyzer using radio-frequency coaxial cables. At a frequency of 10 GHz, carbonized biowaste blocks 78.5% of the incident electromagnetic wave.
T2  - Nanomaterials
T1  - Carbonized Apples and Quinces Stillage for Electromagnetic Shielding
VL  - 14
IS  - 23
SP  - 1882
DO  - 10.3390/nano14231882
ER  - 
@article{
author = "Milenković, Mila and Saeed, Warda and Yasir, Muhammad and Milivojević, Dušan and Azmy, Ali and Nassar, Kamal E. S. and Syrgiannis, Zois and Spanopoulos, Ioannis and Bajuk-Bogdanović, Danica and Maletić, Snežana and Kerkez, Đurđa and Barudžija, Tanja and Jovanović, Svetlana",
year = "2024",
abstract = "Electromagnetic waves (EMWs) have become an integral part of our daily lives, but they are causing a new form of environmental pollution, manifesting as electromagnetic interference (EMI) and radio frequency signal leakage. As a result, the demand for innovative, eco-friendly materials capable of blocking EMWs has escalated in the past decade, underscoring the significance of our research. In the realm of modern science, the creation of new materials must consider the starting materials, production costs, energy usage, and the potential for air, water, and soil pollution. Herein, we utilized biowaste materials generated during the distillation of fruit schnapps. The biowaste from apple and quince schnapps distillation was used as starting material, mixed with KOH, and carbonized at 850 °C, in a nitrogen atmosphere. The structure of samples was investigated using various techniques (infrared, Raman, energy-dispersive X-ray, X-ray photoelectron spectroscopies, thermogravimetric analysis, BET surface area analyzer). Encouragingly, these materials demonstrated the ability to block EMWs within a frequency range of 8 to 12 GHz. Shielding efficiency was measured using waveguide adapters connected to ports (1 and 2) of the vector network analyzer using radio-frequency coaxial cables. At a frequency of 10 GHz, carbonized biowaste blocks 78.5% of the incident electromagnetic wave.",
journal = "Nanomaterials",
title = "Carbonized Apples and Quinces Stillage for Electromagnetic Shielding",
volume = "14",
number = "23",
pages = "1882",
doi = "10.3390/nano14231882"
}
Milenković, M., Saeed, W., Yasir, M., Milivojević, D., Azmy, A., Nassar, K. E. S., Syrgiannis, Z., Spanopoulos, I., Bajuk-Bogdanović, D., Maletić, S., Kerkez, Đ., Barudžija, T.,& Jovanović, S.. (2024). Carbonized Apples and Quinces Stillage for Electromagnetic Shielding. in Nanomaterials, 14(23), 1882.
https://doi.org/10.3390/nano14231882
Milenković M, Saeed W, Yasir M, Milivojević D, Azmy A, Nassar KES, Syrgiannis Z, Spanopoulos I, Bajuk-Bogdanović D, Maletić S, Kerkez Đ, Barudžija T, Jovanović S. Carbonized Apples and Quinces Stillage for Electromagnetic Shielding. in Nanomaterials. 2024;14(23):1882.
doi:10.3390/nano14231882 .
Milenković, Mila, Saeed, Warda, Yasir, Muhammad, Milivojević, Dušan, Azmy, Ali, Nassar, Kamal E. S., Syrgiannis, Zois, Spanopoulos, Ioannis, Bajuk-Bogdanović, Danica, Maletić, Snežana, Kerkez, Đurđa, Barudžija, Tanja, Jovanović, Svetlana, "Carbonized Apples and Quinces Stillage for Electromagnetic Shielding" in Nanomaterials, 14, no. 23 (2024):1882,
https://doi.org/10.3390/nano14231882 . .

DSpace software copyright © 2002-2015  DuraSpace
O repozitorijumu VinaR | Pošaljite zapažanja

re3dataOpenAIRERCUB
 

 

Kompletan repozitorijumGrupeAutoriNasloviTemeOva institucijaAutoriNasloviTeme

Statistika

Pregled statistika

DSpace software copyright © 2002-2015  DuraSpace
O repozitorijumu VinaR | Pošaljite zapažanja

re3dataOpenAIRERCUB