VinaR - Repozitorijum Instituta za nuklearne nauke Vinča
    • English
    • Српски
    • Српски (Serbia)
  • Srpski (latinica) 
    • Engleski
    • Srpski (ćirilica)
    • Srpski (latinica)
  • Prijava
Pregled zapisa 
  •   VinaR
  • Vinča
  • Radovi istraživača
  • Pregled zapisa
  •   VinaR
  • Vinča
  • Radovi istraživača
  • Pregled zapisa
JavaScript is disabled for your browser. Some features of this site may not work without it.

Luminescence Thermometry with Eu3+-Doped Y2Mo3O12: Comparison of Performance of Intensity Ratio and Machine Learning Temperature Read-Outs

Thumbnail
2024
Preuzimanje 🢃
Main article [PDF] (4.333Mb)
Autori
Gavrilović, Tamara
Đorđević, Vesna
Periša, Jovana
Medić, Mina
Ristić, Zoran
Ćirić, Aleksandar
Antić, Željka
Dramićanin, Miroslav
Članak u časopisu (Objavljena verzija)
Metapodaci
Prikaz svih podataka o dokumentu
Apstrakt
Accurate temperature measurement is critical across various scientific and industrial applications, necessitating advancements in thermometry techniques. This study explores luminescence thermometry, specifically utilizing machine learning methodologies to enhance temperature sensitivity and accuracy. We investigate the performance of principal component analysis (PCA) on the Eu3+-doped Y2Mo3O12 luminescent probe, contrasting it with the traditional luminescence intensity ratio (LIR) method. By employing PCA to analyze the full emission spectra collected at varying temperatures, we achieve an average accuracy (ΔT) of 0.9 K and a resolution (δT) of 1.0 K, significantly outperforming the LIR method, which yielded an average accuracy of 2.3 K and a resolution of 2.9 K. Our findings demonstrate that while the LIR method offers a maximum sensitivity (Sr) of 5‰ K⁻1 at 472 K, PCA’s systematic approach enhances the reliability of temperature measurements, marking a crucial advancement in lumin...escence thermometry. This innovative approach not only enriches the dataset analysis but also sets a new standard for temperature measurement precision. © 2024 by the authors.

Ključne reči:
luminescence thermometry / luminescence intensity ratio / principal component analysis / europium / Y2Mo3O12
Izvor:
Materials, 2024, 17, 21, 5354-
Finansiranje / projekti:
  • 2023-07-17 REMTES - Technology for Remote Temperature Measurements in Microfluidic Devices (RS-ScienceFundRS-Prizma2023_TT-7017)
  • Ministarstvo nauke, tehnološkog razvoja i inovacija Republike Srbije, institucionalno finansiranje - 200017 (Univerzitet u Beogradu, Institut za nuklearne nauke Vinča, Beograd-Vinča) (RS-MESTD-inst-2020-200017)

DOI: 10.3390/ma17215354

ISSN: 1996-1944

Scopus: 2-s2.0-85208459525
[ Google Scholar ]
2
URI
https://vinar.vin.bg.ac.rs/handle/123456789/13994
Kolekcije
  • Radovi istraživača
Institucija/grupa
Vinča
TY  - JOUR
AU  - Gavrilović, Tamara
AU  - Đorđević, Vesna
AU  - Periša, Jovana
AU  - Medić, Mina
AU  - Ristić, Zoran
AU  - Ćirić, Aleksandar
AU  - Antić, Željka
AU  - Dramićanin, Miroslav
PY  - 2024
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/13994
AB  - Accurate temperature measurement is critical across various scientific and industrial applications, necessitating advancements in thermometry techniques. This study explores luminescence thermometry, specifically utilizing machine learning methodologies to enhance temperature sensitivity and accuracy. We investigate the performance of principal component analysis (PCA) on the Eu3+-doped Y2Mo3O12 luminescent probe, contrasting it with the traditional luminescence intensity ratio (LIR) method. By employing PCA to analyze the full emission spectra collected at varying temperatures, we achieve an average accuracy (ΔT) of 0.9 K and a resolution (δT) of 1.0 K, significantly outperforming the LIR method, which yielded an average accuracy of 2.3 K and a resolution of 2.9 K. Our findings demonstrate that while the LIR method offers a maximum sensitivity (Sr) of 5‰ K⁻1 at 472 K, PCA’s systematic approach enhances the reliability of temperature measurements, marking a crucial advancement in luminescence thermometry. This innovative approach not only enriches the dataset analysis but also sets a new standard for temperature measurement precision. © 2024 by the authors.
T2  - Materials
T1  - Luminescence Thermometry with Eu3+-Doped Y2Mo3O12: Comparison of Performance of Intensity Ratio and Machine Learning Temperature Read-Outs
VL  - 17
IS  - 21
SP  - 5354
DO  - 10.3390/ma17215354
ER  - 
@article{
author = "Gavrilović, Tamara and Đorđević, Vesna and Periša, Jovana and Medić, Mina and Ristić, Zoran and Ćirić, Aleksandar and Antić, Željka and Dramićanin, Miroslav",
year = "2024",
abstract = "Accurate temperature measurement is critical across various scientific and industrial applications, necessitating advancements in thermometry techniques. This study explores luminescence thermometry, specifically utilizing machine learning methodologies to enhance temperature sensitivity and accuracy. We investigate the performance of principal component analysis (PCA) on the Eu3+-doped Y2Mo3O12 luminescent probe, contrasting it with the traditional luminescence intensity ratio (LIR) method. By employing PCA to analyze the full emission spectra collected at varying temperatures, we achieve an average accuracy (ΔT) of 0.9 K and a resolution (δT) of 1.0 K, significantly outperforming the LIR method, which yielded an average accuracy of 2.3 K and a resolution of 2.9 K. Our findings demonstrate that while the LIR method offers a maximum sensitivity (Sr) of 5‰ K⁻1 at 472 K, PCA’s systematic approach enhances the reliability of temperature measurements, marking a crucial advancement in luminescence thermometry. This innovative approach not only enriches the dataset analysis but also sets a new standard for temperature measurement precision. © 2024 by the authors.",
journal = "Materials",
title = "Luminescence Thermometry with Eu3+-Doped Y2Mo3O12: Comparison of Performance of Intensity Ratio and Machine Learning Temperature Read-Outs",
volume = "17",
number = "21",
pages = "5354",
doi = "10.3390/ma17215354"
}
Gavrilović, T., Đorđević, V., Periša, J., Medić, M., Ristić, Z., Ćirić, A., Antić, Ž.,& Dramićanin, M.. (2024). Luminescence Thermometry with Eu3+-Doped Y2Mo3O12: Comparison of Performance of Intensity Ratio and Machine Learning Temperature Read-Outs. in Materials, 17(21), 5354.
https://doi.org/10.3390/ma17215354
Gavrilović T, Đorđević V, Periša J, Medić M, Ristić Z, Ćirić A, Antić Ž, Dramićanin M. Luminescence Thermometry with Eu3+-Doped Y2Mo3O12: Comparison of Performance of Intensity Ratio and Machine Learning Temperature Read-Outs. in Materials. 2024;17(21):5354.
doi:10.3390/ma17215354 .
Gavrilović, Tamara, Đorđević, Vesna, Periša, Jovana, Medić, Mina, Ristić, Zoran, Ćirić, Aleksandar, Antić, Željka, Dramićanin, Miroslav, "Luminescence Thermometry with Eu3+-Doped Y2Mo3O12: Comparison of Performance of Intensity Ratio and Machine Learning Temperature Read-Outs" in Materials, 17, no. 21 (2024):5354,
https://doi.org/10.3390/ma17215354 . .

DSpace software copyright © 2002-2015  DuraSpace
O repozitorijumu VinaR | Pošaljite zapažanja

re3dataOpenAIRERCUB
 

 

Kompletan repozitorijumGrupeAutoriNasloviTemeOva institucijaAutoriNasloviTeme

Statistika

Pregled statistika

DSpace software copyright © 2002-2015  DuraSpace
O repozitorijumu VinaR | Pošaljite zapažanja

re3dataOpenAIRERCUB