Comparable Toxicity of Surface-Modified TiO2 Nanoparticles: An In Vivo Experimental Study on Reproductive Toxicity in Rats
2024
Preuzimanje 🢃
Autori
Todorović, Ana
Bobić, Katarina
Veljković, Filip
Pejić, Snežana
Glumac, Sofija
Stanković, Sanja
Milovanović, Tijana
Vukoje, Ivana
Nedeljković, Jovan
Radojević Škodrić, Sanja
Pajović, Snežana B.
Drakulić, Dunja
Članak u časopisu (Objavljena verzija)
Metapodaci
Prikaz svih podataka o dokumentuApstrakt
Nanoparticles (NPs), a distinct class of particles ranging in size from 1 to 100 nm, are one of the most promising technologies of the 21st century, and titanium dioxide NPs (TiO2 NPs) are among the most widely produced and used NPs globally. The increased application of TiO2 NPs raises concerns regarding their global safety and risks of exposure. Many animal studies have reported the accumulation of TiO2 NPs in female reproductive organs; however, evidence of the resultant toxicity remains ambiguous. Since the surface area and chemical modifications of NPs can significantly change their cytotoxicity, we aimed to compare the toxic effects of pristine TiO2 powder with surface-modified TiO2 powders with salicylic acid (TiO2/SA) and 5-aminosalicylic acid (TiO2/5-ASA) on the ovaries, oviducts, and uterus on the 14th day following acute oral treatment. The results, based on alterations in food and water intake, body mass, organ-to-body mass ratio, hormonal status, histological features of t...issues of interest, and antioxidant parameters, suggest that the modification with 5-ASA can mitigate some of the observed toxic effects of TiO2 powder and encourage future investigations to create NPs that can potentially reduce the harmful effects of TiO2 NPs while preserving their positive impacts.
Ključne reči:
TiO2 / nanoparticles / chemical modifications / reproductive organs / toxicity / oxidative stress / hormonal status / ratsIzvor:
Antioxidants, 2024, 13, 2, 231-Finansiranje / projekti:
- Ministarstvo nauke, tehnološkog razvoja i inovacija Republike Srbije, institucionalno finansiranje - 200017 (Univerzitet u Beogradu, Institut za nuklearne nauke Vinča, Beograd-Vinča) (RS-MESTD-inst-2020-200017)
- Ministarstvo nauke, tehnološkog razvoja i inovacija Republike Srbije, institucionalno finansiranje - 200110 (Univerzitet u Beogradu, Medicinski fakultet) (RS-MESTD-inst-2020-200110)
- 2023-07-17 HYDIS - Multifunctional visible-light-responsive inorganic- organic hybrids for efficient hydrogenproduction and disinfection (RS-ScienceFundRS-Prizma2023_TT-5354)
DOI: 10.3390/antiox13020231
ISSN: 2076-3921
WoS: 001175068400001
Scopus: 2-s2.0-85187278976
Kolekcije
Institucija/grupa
VinčaTY - JOUR AU - Todorović, Ana AU - Bobić, Katarina AU - Veljković, Filip AU - Pejić, Snežana AU - Glumac, Sofija AU - Stanković, Sanja AU - Milovanović, Tijana AU - Vukoje, Ivana AU - Nedeljković, Jovan AU - Radojević Škodrić, Sanja AU - Pajović, Snežana B. AU - Drakulić, Dunja PY - 2024 UR - https://vinar.vin.bg.ac.rs/handle/123456789/13090 AB - Nanoparticles (NPs), a distinct class of particles ranging in size from 1 to 100 nm, are one of the most promising technologies of the 21st century, and titanium dioxide NPs (TiO2 NPs) are among the most widely produced and used NPs globally. The increased application of TiO2 NPs raises concerns regarding their global safety and risks of exposure. Many animal studies have reported the accumulation of TiO2 NPs in female reproductive organs; however, evidence of the resultant toxicity remains ambiguous. Since the surface area and chemical modifications of NPs can significantly change their cytotoxicity, we aimed to compare the toxic effects of pristine TiO2 powder with surface-modified TiO2 powders with salicylic acid (TiO2/SA) and 5-aminosalicylic acid (TiO2/5-ASA) on the ovaries, oviducts, and uterus on the 14th day following acute oral treatment. The results, based on alterations in food and water intake, body mass, organ-to-body mass ratio, hormonal status, histological features of tissues of interest, and antioxidant parameters, suggest that the modification with 5-ASA can mitigate some of the observed toxic effects of TiO2 powder and encourage future investigations to create NPs that can potentially reduce the harmful effects of TiO2 NPs while preserving their positive impacts. T2 - Antioxidants T1 - Comparable Toxicity of Surface-Modified TiO2 Nanoparticles: An In Vivo Experimental Study on Reproductive Toxicity in Rats VL - 13 IS - 2 SP - 231 DO - 10.3390/antiox13020231 ER -
@article{
author = "Todorović, Ana and Bobić, Katarina and Veljković, Filip and Pejić, Snežana and Glumac, Sofija and Stanković, Sanja and Milovanović, Tijana and Vukoje, Ivana and Nedeljković, Jovan and Radojević Škodrić, Sanja and Pajović, Snežana B. and Drakulić, Dunja",
year = "2024",
abstract = "Nanoparticles (NPs), a distinct class of particles ranging in size from 1 to 100 nm, are one of the most promising technologies of the 21st century, and titanium dioxide NPs (TiO2 NPs) are among the most widely produced and used NPs globally. The increased application of TiO2 NPs raises concerns regarding their global safety and risks of exposure. Many animal studies have reported the accumulation of TiO2 NPs in female reproductive organs; however, evidence of the resultant toxicity remains ambiguous. Since the surface area and chemical modifications of NPs can significantly change their cytotoxicity, we aimed to compare the toxic effects of pristine TiO2 powder with surface-modified TiO2 powders with salicylic acid (TiO2/SA) and 5-aminosalicylic acid (TiO2/5-ASA) on the ovaries, oviducts, and uterus on the 14th day following acute oral treatment. The results, based on alterations in food and water intake, body mass, organ-to-body mass ratio, hormonal status, histological features of tissues of interest, and antioxidant parameters, suggest that the modification with 5-ASA can mitigate some of the observed toxic effects of TiO2 powder and encourage future investigations to create NPs that can potentially reduce the harmful effects of TiO2 NPs while preserving their positive impacts.",
journal = "Antioxidants",
title = "Comparable Toxicity of Surface-Modified TiO2 Nanoparticles: An In Vivo Experimental Study on Reproductive Toxicity in Rats",
volume = "13",
number = "2",
pages = "231",
doi = "10.3390/antiox13020231"
}
Todorović, A., Bobić, K., Veljković, F., Pejić, S., Glumac, S., Stanković, S., Milovanović, T., Vukoje, I., Nedeljković, J., Radojević Škodrić, S., Pajović, S. B.,& Drakulić, D.. (2024). Comparable Toxicity of Surface-Modified TiO2 Nanoparticles: An In Vivo Experimental Study on Reproductive Toxicity in Rats. in Antioxidants, 13(2), 231. https://doi.org/10.3390/antiox13020231
Todorović A, Bobić K, Veljković F, Pejić S, Glumac S, Stanković S, Milovanović T, Vukoje I, Nedeljković J, Radojević Škodrić S, Pajović SB, Drakulić D. Comparable Toxicity of Surface-Modified TiO2 Nanoparticles: An In Vivo Experimental Study on Reproductive Toxicity in Rats. in Antioxidants. 2024;13(2):231. doi:10.3390/antiox13020231 .
Todorović, Ana, Bobić, Katarina, Veljković, Filip, Pejić, Snežana, Glumac, Sofija, Stanković, Sanja, Milovanović, Tijana, Vukoje, Ivana, Nedeljković, Jovan, Radojević Škodrić, Sanja, Pajović, Snežana B., Drakulić, Dunja, "Comparable Toxicity of Surface-Modified TiO2 Nanoparticles: An In Vivo Experimental Study on Reproductive Toxicity in Rats" in Antioxidants, 13, no. 2 (2024):231, https://doi.org/10.3390/antiox13020231 . .


