Applicability of Construction and Demolition Waste in Geopolymers – A Screening Test
2023
Download 🢃
Authors
Jelić, Ivana V.
Savić, Aleksandar R.
Miljojčić, Tatjana
Šljivić-Ivanović, Marija
Dimović, Slavko
Janković, Marija M.
Perović, Ivana
Zakić, Dimitrije M.
Antonijević, Dragi Lj.
Conference object (Published version)

Metadata
Show full item recordAbstract
In this study, the applicability of construction and demolition waste (C&DW) in geopolymerization technology was investigated. The C&DW components, concrete and solid bricks, were collected from demolition sites in Belgrade, Republic of Serbia. The concrete sample came from a demolished fifty-year-old construction road, while the remains of solid bricks originated from a 1930s building. Prior to mechanical testing, the C&DW components were characterized by XRD analysis for their mineralogical composition. The results showed that the concrete waste consisted mainly of quartz (SiO2) and calcite (CaCO3), while the brick waste sample contained anorthite from the feldspar group (CaAl2Si2O8), wollastonite (Ca0.957Fe0.043O3Si) and mullite (Al2.4O4.8SiO6). The mechanical properties were examined using the screening method on three geopolymer mixtures, one of each mixture of concrete and brick powders and a mixture of both C&DW components. According to the standard SRPS EN 12390-3:2010 for cubi...c samples, the geopolymer samples were prepared with alkaline activators for testing the compressive strength as the dominant parameter in the mortar and concrete evaluation. The compressive strength values increased in the range of 2.4 MPa for concrete, 10.2 MPa for brick, and 10.8 MPa for the mixed geopolymer sample. The low compressive strength result of the concrete sample was the consequence of the mineral composition, i.e., the absence of aluminosilicate. However, the brick and the sample with a combination of both types of waste showed moderately satisfactory compressive strength, which could be the starting point for further investigations.
Keywords:
brick / concrete / compressive strength / recycleSource:
CNN Tech 2023 - International conference of experimental and numerical investigations and new technologies : Programme and the Book of Abstracts; June 4-7, 2023; Zlatibor, 2023, 81-81Publisher:
- Belgrade : University of Belgrade, Faculty of Mechanical Engineering
Funding / projects:
- Ministry of Science, Technological Development and Innovation of the Republic of Serbia, institutional funding - 200017 (University of Belgrade, Institute of Nuclear Sciences 'Vinča', Belgrade-Vinča) (RS-MESTD-inst-2020-200017)
- Ministry of Science, Technological Development and Innovation of the Republic of Serbia, institutional funding - 200092 (University of Belgrade, Faculty of Civil Engineering) (RS-MESTD-inst-2020-200092)
- Ministry of Science, Technological Development and Innovation of the Republic of Serbia, institutional funding - 200213 (Innovation Center of the Faculty of Mechanical Engineering) (RS-MESTD-inst-2020-200213)
- Republic of Serbia. Innovation Fund [Proof of Concept ID 5755]
Institution/Community
VinčaTY - CONF AU - Jelić, Ivana V. AU - Savić, Aleksandar R. AU - Miljojčić, Tatjana AU - Šljivić-Ivanović, Marija AU - Dimović, Slavko AU - Janković, Marija M. AU - Perović, Ivana AU - Zakić, Dimitrije M. AU - Antonijević, Dragi Lj. PY - 2023 UR - https://vinar.vin.bg.ac.rs/handle/123456789/11452 AB - In this study, the applicability of construction and demolition waste (C&DW) in geopolymerization technology was investigated. The C&DW components, concrete and solid bricks, were collected from demolition sites in Belgrade, Republic of Serbia. The concrete sample came from a demolished fifty-year-old construction road, while the remains of solid bricks originated from a 1930s building. Prior to mechanical testing, the C&DW components were characterized by XRD analysis for their mineralogical composition. The results showed that the concrete waste consisted mainly of quartz (SiO2) and calcite (CaCO3), while the brick waste sample contained anorthite from the feldspar group (CaAl2Si2O8), wollastonite (Ca0.957Fe0.043O3Si) and mullite (Al2.4O4.8SiO6). The mechanical properties were examined using the screening method on three geopolymer mixtures, one of each mixture of concrete and brick powders and a mixture of both C&DW components. According to the standard SRPS EN 12390-3:2010 for cubic samples, the geopolymer samples were prepared with alkaline activators for testing the compressive strength as the dominant parameter in the mortar and concrete evaluation. The compressive strength values increased in the range of 2.4 MPa for concrete, 10.2 MPa for brick, and 10.8 MPa for the mixed geopolymer sample. The low compressive strength result of the concrete sample was the consequence of the mineral composition, i.e., the absence of aluminosilicate. However, the brick and the sample with a combination of both types of waste showed moderately satisfactory compressive strength, which could be the starting point for further investigations. PB - Belgrade : University of Belgrade, Faculty of Mechanical Engineering C3 - CNN Tech 2023 - International conference of experimental and numerical investigations and new technologies : Programme and the Book of Abstracts; June 4-7, 2023; Zlatibor T1 - Applicability of Construction and Demolition Waste in Geopolymers – A Screening Test SP - 81 EP - 81 UR - https://hdl.handle.net/21.15107/rcub_vinar_11452 ER -
@conference{
author = "Jelić, Ivana V. and Savić, Aleksandar R. and Miljojčić, Tatjana and Šljivić-Ivanović, Marija and Dimović, Slavko and Janković, Marija M. and Perović, Ivana and Zakić, Dimitrije M. and Antonijević, Dragi Lj.",
year = "2023",
abstract = "In this study, the applicability of construction and demolition waste (C&DW) in geopolymerization technology was investigated. The C&DW components, concrete and solid bricks, were collected from demolition sites in Belgrade, Republic of Serbia. The concrete sample came from a demolished fifty-year-old construction road, while the remains of solid bricks originated from a 1930s building. Prior to mechanical testing, the C&DW components were characterized by XRD analysis for their mineralogical composition. The results showed that the concrete waste consisted mainly of quartz (SiO2) and calcite (CaCO3), while the brick waste sample contained anorthite from the feldspar group (CaAl2Si2O8), wollastonite (Ca0.957Fe0.043O3Si) and mullite (Al2.4O4.8SiO6). The mechanical properties were examined using the screening method on three geopolymer mixtures, one of each mixture of concrete and brick powders and a mixture of both C&DW components. According to the standard SRPS EN 12390-3:2010 for cubic samples, the geopolymer samples were prepared with alkaline activators for testing the compressive strength as the dominant parameter in the mortar and concrete evaluation. The compressive strength values increased in the range of 2.4 MPa for concrete, 10.2 MPa for brick, and 10.8 MPa for the mixed geopolymer sample. The low compressive strength result of the concrete sample was the consequence of the mineral composition, i.e., the absence of aluminosilicate. However, the brick and the sample with a combination of both types of waste showed moderately satisfactory compressive strength, which could be the starting point for further investigations.",
publisher = "Belgrade : University of Belgrade, Faculty of Mechanical Engineering",
journal = "CNN Tech 2023 - International conference of experimental and numerical investigations and new technologies : Programme and the Book of Abstracts; June 4-7, 2023; Zlatibor",
title = "Applicability of Construction and Demolition Waste in Geopolymers – A Screening Test",
pages = "81-81",
url = "https://hdl.handle.net/21.15107/rcub_vinar_11452"
}
Jelić, I. V., Savić, A. R., Miljojčić, T., Šljivić-Ivanović, M., Dimović, S., Janković, M. M., Perović, I., Zakić, D. M.,& Antonijević, D. Lj.. (2023). Applicability of Construction and Demolition Waste in Geopolymers – A Screening Test. in CNN Tech 2023 - International conference of experimental and numerical investigations and new technologies : Programme and the Book of Abstracts; June 4-7, 2023; Zlatibor Belgrade : University of Belgrade, Faculty of Mechanical Engineering., 81-81. https://hdl.handle.net/21.15107/rcub_vinar_11452
Jelić IV, Savić AR, Miljojčić T, Šljivić-Ivanović M, Dimović S, Janković MM, Perović I, Zakić DM, Antonijević DL. Applicability of Construction and Demolition Waste in Geopolymers – A Screening Test. in CNN Tech 2023 - International conference of experimental and numerical investigations and new technologies : Programme and the Book of Abstracts; June 4-7, 2023; Zlatibor. 2023;:81-81. https://hdl.handle.net/21.15107/rcub_vinar_11452 .
Jelić, Ivana V., Savić, Aleksandar R., Miljojčić, Tatjana, Šljivić-Ivanović, Marija, Dimović, Slavko, Janković, Marija M., Perović, Ivana, Zakić, Dimitrije M., Antonijević, Dragi Lj., "Applicability of Construction and Demolition Waste in Geopolymers – A Screening Test" in CNN Tech 2023 - International conference of experimental and numerical investigations and new technologies : Programme and the Book of Abstracts; June 4-7, 2023; Zlatibor (2023):81-81, https://hdl.handle.net/21.15107/rcub_vinar_11452 .

