Improvement of nutritional and bioactive properties of barley β‐glucan‐based food products using Bacillus subtilis 168 endo‐β‐1,3‐1,4‐glucanase
Samo za registrovane korisnike
2023
Autori
Šokarda Slavić, Marinela
Kojić, Milan
Margetić, Aleksandra
Ristović, Marina
Pavlović, Marija
Nikolić, Stefan
Vujčić, Zoran
Članak u časopisu (Objavljena verzija)

Metapodaci
Prikaz svih podataka o dokumentuApstrakt
The combination of β‐oligosaccharides from enzymatically hydrolysed barley β‐glucan has attracted interest recently due to its positive effects on human health. This study aimed to assess the impact of the endo‐β‐1,3‐1,4‐glucanase enzyme from Bacillus subtilis 168 on improving the nutritional and bioactive properties of barley β‐glucan. A new procedure for the isolation of β‐glucan was developed, at a lower temperature (45 °C), enabling purity from starch contamination, without affecting the yield (6 g β‐glucan from 100 g of barley flour). The endo‐β‐1,3‐1,4‐glucanase is cloned into E. coli pQE_Ek enables the high production and purification (82% yield, 1.8 mg mL −1 and 440 U mg −1 ) of an enzyme identical to the natural one (25.5 kDa). The enzymatic reaction showed high efficiency of β‐glucan degradation by recombinant enzyme, giving a mixture of products (of which 3‐O‐β‐cellobiosyl‐D‐glucose and 3‐O‐β‐cellotriosyl‐D‐glucose are the most abundant), the reduction of viscosity (17%) and... increase in antioxidant capacities by 15.2%, 30.9% and 44.0% assessed by ABTS, DPPH and ORAC, respectively. These results indicate the possible application of endo‐β‐1,3‐1,4‐glucanase enzyme in improving the properties of barley β‐glucan used as functional foods.
Ključne reči:
Antioxidant potential / barley / endo-β-1,3-1,4-glucanase / β-glucanIzvor:
International Journal of Food Science & Technology, 2023Finansiranje / projekti:
- Ministarstvo nauke, tehnološkog razvoja i inovacija Republike Srbije, institucionalno finansiranje - 200017 (Univerzitet u Beogradu, Institut za nuklearne nauke Vinča, Beograd-Vinča) (RS-MESTD-inst-2020-200017)
- Ministarstvo nauke, tehnološkog razvoja i inovacija Republike Srbije, institucionalno finansiranje - 200026 (Univerzitet u Beogradu, Institut za hemiju, tehnologiju i metalurgiju - IHTM) (RS-MESTD-inst-2020-200026)
- Ministarstvo nauke, tehnološkog razvoja i inovacija Republike Srbije, institucionalno finansiranje - 200168 (Univerzitet u Beogradu, Hemijski fakultet) (RS-MESTD-inst-2020-200168)
- Ministarstvo nauke, tehnološkog razvoja i inovacija Republike Srbije, institucionalno finansiranje - 200177 (Centar za imunološka istraživanja 'Branislav Janković' Torlak, Beograd) (RS-MESTD-inst-2020-200177)
- Ministarstvo nauke, tehnološkog razvoja i inovacija Republike Srbije, institucionalno finansiranje - 200288 (Inovacioni centar Hemijskog fakulteta u Beogradu doo) (RS-MESTD-inst-2020-200288)
DOI: 10.1111/ijfs.16647
ISSN: 0950-5423
WoS: 001051812900001
Scopus: 2-s2.0-85168444183
Institucija/grupa
VinčaTY - JOUR AU - Šokarda Slavić, Marinela AU - Kojić, Milan AU - Margetić, Aleksandra AU - Ristović, Marina AU - Pavlović, Marija AU - Nikolić, Stefan AU - Vujčić, Zoran PY - 2023 UR - https://vinar.vin.bg.ac.rs/handle/123456789/11438 AB - The combination of β‐oligosaccharides from enzymatically hydrolysed barley β‐glucan has attracted interest recently due to its positive effects on human health. This study aimed to assess the impact of the endo‐β‐1,3‐1,4‐glucanase enzyme from Bacillus subtilis 168 on improving the nutritional and bioactive properties of barley β‐glucan. A new procedure for the isolation of β‐glucan was developed, at a lower temperature (45 °C), enabling purity from starch contamination, without affecting the yield (6 g β‐glucan from 100 g of barley flour). The endo‐β‐1,3‐1,4‐glucanase is cloned into E. coli pQE_Ek enables the high production and purification (82% yield, 1.8 mg mL −1 and 440 U mg −1 ) of an enzyme identical to the natural one (25.5 kDa). The enzymatic reaction showed high efficiency of β‐glucan degradation by recombinant enzyme, giving a mixture of products (of which 3‐O‐β‐cellobiosyl‐D‐glucose and 3‐O‐β‐cellotriosyl‐D‐glucose are the most abundant), the reduction of viscosity (17%) and increase in antioxidant capacities by 15.2%, 30.9% and 44.0% assessed by ABTS, DPPH and ORAC, respectively. These results indicate the possible application of endo‐β‐1,3‐1,4‐glucanase enzyme in improving the properties of barley β‐glucan used as functional foods. T2 - International Journal of Food Science & Technology T1 - Improvement of nutritional and bioactive properties of barley β‐glucan‐based food products using Bacillus subtilis 168 endo‐β‐1,3‐1,4‐glucanase DO - 10.1111/ijfs.16647 ER -
@article{
author = "Šokarda Slavić, Marinela and Kojić, Milan and Margetić, Aleksandra and Ristović, Marina and Pavlović, Marija and Nikolić, Stefan and Vujčić, Zoran",
year = "2023",
abstract = "The combination of β‐oligosaccharides from enzymatically hydrolysed barley β‐glucan has attracted interest recently due to its positive effects on human health. This study aimed to assess the impact of the endo‐β‐1,3‐1,4‐glucanase enzyme from Bacillus subtilis 168 on improving the nutritional and bioactive properties of barley β‐glucan. A new procedure for the isolation of β‐glucan was developed, at a lower temperature (45 °C), enabling purity from starch contamination, without affecting the yield (6 g β‐glucan from 100 g of barley flour). The endo‐β‐1,3‐1,4‐glucanase is cloned into E. coli pQE_Ek enables the high production and purification (82% yield, 1.8 mg mL −1 and 440 U mg −1 ) of an enzyme identical to the natural one (25.5 kDa). The enzymatic reaction showed high efficiency of β‐glucan degradation by recombinant enzyme, giving a mixture of products (of which 3‐O‐β‐cellobiosyl‐D‐glucose and 3‐O‐β‐cellotriosyl‐D‐glucose are the most abundant), the reduction of viscosity (17%) and increase in antioxidant capacities by 15.2%, 30.9% and 44.0% assessed by ABTS, DPPH and ORAC, respectively. These results indicate the possible application of endo‐β‐1,3‐1,4‐glucanase enzyme in improving the properties of barley β‐glucan used as functional foods.",
journal = "International Journal of Food Science & Technology",
title = "Improvement of nutritional and bioactive properties of barley β‐glucan‐based food products using Bacillus subtilis 168 endo‐β‐1,3‐1,4‐glucanase",
doi = "10.1111/ijfs.16647"
}
Šokarda Slavić, M., Kojić, M., Margetić, A., Ristović, M., Pavlović, M., Nikolić, S.,& Vujčić, Z.. (2023). Improvement of nutritional and bioactive properties of barley β‐glucan‐based food products using Bacillus subtilis 168 endo‐β‐1,3‐1,4‐glucanase. in International Journal of Food Science & Technology. https://doi.org/10.1111/ijfs.16647
Šokarda Slavić M, Kojić M, Margetić A, Ristović M, Pavlović M, Nikolić S, Vujčić Z. Improvement of nutritional and bioactive properties of barley β‐glucan‐based food products using Bacillus subtilis 168 endo‐β‐1,3‐1,4‐glucanase. in International Journal of Food Science & Technology. 2023;. doi:10.1111/ijfs.16647 .
Šokarda Slavić, Marinela, Kojić, Milan, Margetić, Aleksandra, Ristović, Marina, Pavlović, Marija, Nikolić, Stefan, Vujčić, Zoran, "Improvement of nutritional and bioactive properties of barley β‐glucan‐based food products using Bacillus subtilis 168 endo‐β‐1,3‐1,4‐glucanase" in International Journal of Food Science & Technology (2023), https://doi.org/10.1111/ijfs.16647 . .
