VinaR - Repository of the Vinča Nuclear Institute
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   Vinar
  • Vinča
  • Radovi istraživača
  • View Item
  •   Vinar
  • Vinča
  • Radovi istraživača
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Composites of transition metal dichalcogenides and topological insulators as catalytic materials for HER

Authorized Users Only
2023
Authors
Rmuš, Jelena
Belec, Blaž
Milanović, Igor
Fanetti, Mattia
Gardonio, Sandra
Valant, Matjaž
Kurko, Sandra
Article (Published version)
Metadata
Show full item record
Abstract
To produce materials with enhanced catalytic activity toward hydrogen evolution reaction we combined MoS2 as transition metal dichalcogenide and Bi2Se3 as topological insulator. The composites were produced by three methods: mechanical milling, high power sonication and spin-coating. MoS2 and Bi2Se3 as precursors in composites preparation were synthesized by hydrothermal method. The structure and morphology of various composites were correlated with their electrochemical properties obtained by impedance spectroscopy, linear sweep and cyclic voltammetry. Mechanical milling provided composites with the most pronounced activity improvement as a result of the largest damage and amount of introduced defects into the materials structure. The potential required to achieve the current density of 10 mA/cm2 in these samples is lowered up to 50 mV compared to as-synthesized material. Bi2Se3 in composite materials promotes the electron transfer to MoS2 which leads to the decrease of charge transfe...r resistance by 25 Ω.

Keywords:
Electrocatalyst / Electron transfer / Hydrogen evolution reaction / MoS/BiSe composites
Source:
Journal of Energy Storage, 2023, 68, 107719-
Funding / projects:
  • Serbia-Slovenia bilateral project No.337-00-21/2020-09/39
  • Ministry of Science, Technological Development and Innovation of the Republic of Serbia, institutional funding - 200017 (University of Belgrade, Institute of Nuclear Sciences 'Vinča', Belgrade-Vinča) (RS-MESTD-inst-2020-200017)
  • Danube Rectors’ Conference Initiative fund and the Slovenian Research Agency through the research core funding [No. P2-041]

DOI: 10.1016/j.est.2023.107719

ISSN: 2352-152X

WoS: 001014804600001

Scopus: 2-s2.0-85161056512
[ Google Scholar ]
4
3
URI
https://vinar.vin.bg.ac.rs/handle/123456789/11096
Collections
  • 010 - Laboratorija za fiziku
  • Radovi istraživača
Institution/Community
Vinča
TY  - JOUR
AU  - Rmuš, Jelena
AU  - Belec, Blaž
AU  - Milanović, Igor
AU  - Fanetti, Mattia
AU  - Gardonio, Sandra
AU  - Valant, Matjaž
AU  - Kurko, Sandra
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11096
AB  - To produce materials with enhanced catalytic activity toward hydrogen evolution reaction we combined MoS2 as transition metal dichalcogenide and Bi2Se3 as topological insulator. The composites were produced by three methods: mechanical milling, high power sonication and spin-coating. MoS2 and Bi2Se3 as precursors in composites preparation were synthesized by hydrothermal method. The structure and morphology of various composites were correlated with their electrochemical properties obtained by impedance spectroscopy, linear sweep and cyclic voltammetry. Mechanical milling provided composites with the most pronounced activity improvement as a result of the largest damage and amount of introduced defects into the materials structure. The potential required to achieve the current density of 10 mA/cm2 in these samples is lowered up to 50 mV compared to as-synthesized material. Bi2Se3 in composite materials promotes the electron transfer to MoS2 which leads to the decrease of charge transfer resistance by 25 Ω.
T2  - Journal of Energy Storage
T1  - Composites of transition metal dichalcogenides and topological insulators as catalytic materials for HER
VL  - 68
SP  - 107719
DO  - 10.1016/j.est.2023.107719
ER  - 
@article{
author = "Rmuš, Jelena and Belec, Blaž and Milanović, Igor and Fanetti, Mattia and Gardonio, Sandra and Valant, Matjaž and Kurko, Sandra",
year = "2023",
abstract = "To produce materials with enhanced catalytic activity toward hydrogen evolution reaction we combined MoS2 as transition metal dichalcogenide and Bi2Se3 as topological insulator. The composites were produced by three methods: mechanical milling, high power sonication and spin-coating. MoS2 and Bi2Se3 as precursors in composites preparation were synthesized by hydrothermal method. The structure and morphology of various composites were correlated with their electrochemical properties obtained by impedance spectroscopy, linear sweep and cyclic voltammetry. Mechanical milling provided composites with the most pronounced activity improvement as a result of the largest damage and amount of introduced defects into the materials structure. The potential required to achieve the current density of 10 mA/cm2 in these samples is lowered up to 50 mV compared to as-synthesized material. Bi2Se3 in composite materials promotes the electron transfer to MoS2 which leads to the decrease of charge transfer resistance by 25 Ω.",
journal = "Journal of Energy Storage",
title = "Composites of transition metal dichalcogenides and topological insulators as catalytic materials for HER",
volume = "68",
pages = "107719",
doi = "10.1016/j.est.2023.107719"
}
Rmuš, J., Belec, B., Milanović, I., Fanetti, M., Gardonio, S., Valant, M.,& Kurko, S.. (2023). Composites of transition metal dichalcogenides and topological insulators as catalytic materials for HER. in Journal of Energy Storage, 68, 107719.
https://doi.org/10.1016/j.est.2023.107719
Rmuš J, Belec B, Milanović I, Fanetti M, Gardonio S, Valant M, Kurko S. Composites of transition metal dichalcogenides and topological insulators as catalytic materials for HER. in Journal of Energy Storage. 2023;68:107719.
doi:10.1016/j.est.2023.107719 .
Rmuš, Jelena, Belec, Blaž, Milanović, Igor, Fanetti, Mattia, Gardonio, Sandra, Valant, Matjaž, Kurko, Sandra, "Composites of transition metal dichalcogenides and topological insulators as catalytic materials for HER" in Journal of Energy Storage, 68 (2023):107719,
https://doi.org/10.1016/j.est.2023.107719 . .

DSpace software copyright © 2002-2015  DuraSpace
About the VinaR Repository | Send Feedback

re3dataOpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About the VinaR Repository | Send Feedback

re3dataOpenAIRERCUB