VinaR - Repository of the Vinča Nuclear Institute
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   Vinar
  • Vinča
  • Radovi istraživača
  • View Item
  •   Vinar
  • Vinča
  • Radovi istraživača
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Hydrogen storage properties of MgH2–Tm: Ni-catalysis vs. mechanical milling

Authorized Users Only
2023
Authors
Babić, Bojana
Prvulović, Milica
Filipović, Nenad
Mravik, Željko
Sekulić, Zorana
Milošević Govedarović, Sanja S.
Milanović, Igor
Article (Published version)
Metadata
Show full item record
Abstract
The influence of the addition of nickel on hydrogen desorption from the MgH2–Ni composite was investigated. The composite powder was ball-milled for 15, 30 and 45 min and characterized by XRD, SEM-EDS, PSD, DSC and TPD methods. It was observed that the uniform distribution of nickel decreases hydrogen desorption temperature by more than 100 °C. A kinetic model for the hydrogen desorption process was also determined. The hydrogen desorption reaction in catalyzed samples is described by the Avrami-Erofeev model with the value of parameter n = 4. The apparent activation energy of the hydrogen desorption reaction was decreased with the increase of milling time and the addition of nickel. It has been shown for the first time that two main processes (grinding and the catalytic effect) could be separately analyzed. It is concluded that for investigated short milling times, the catalytic effect of Ni is predominant.
Keywords:
Ball milling / Hydrogen desorption temperature / Hydrogen storage of MgH based system / Mechanochemistry / MgH2 – Ni system / Ni-catalysis of H desorption
Source:
International Journal of Hydrogen Energy, 2023, 54, 446-456
Funding / projects:
  • Ministry of Science, Technological Development and Innovation of the Republic of Serbia, institutional funding - 200017 (University of Belgrade, Institute of Nuclear Sciences 'Vinča', Belgrade-Vinča) (RS-MESTD-inst-2020-200017)
  • Ministry of Science, Technological Development and Innovation of the Republic of Serbia, institutional funding - 200175 (Institute of Technical Sciences of SASA, Belgrade) (RS-MESTD-inst-2020-200175)

DOI: 10.1016/j.ijhydene.2023.04.078

ISSN: 0360-3199

WoS: 001141575200001

Scopus: 2-s2.0-85153794337
[ Google Scholar ]
21
22
URI
https://vinar.vin.bg.ac.rs/handle/123456789/10936
Collections
  • 010 - Laboratorija za fiziku
  • Radovi istraživača
Institution/Community
Vinča
TY  - JOUR
AU  - Babić, Bojana
AU  - Prvulović, Milica
AU  - Filipović, Nenad
AU  - Mravik, Željko
AU  - Sekulić, Zorana
AU  - Milošević Govedarović, Sanja S.
AU  - Milanović, Igor
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10936
AB  - The influence of the addition of nickel on hydrogen desorption from the MgH2–Ni composite was investigated. The composite powder was ball-milled for 15, 30 and 45 min and characterized by XRD, SEM-EDS, PSD, DSC and TPD methods. It was observed that the uniform distribution of nickel decreases hydrogen desorption temperature by more than 100 °C. A kinetic model for the hydrogen desorption process was also determined. The hydrogen desorption reaction in catalyzed samples is described by the Avrami-Erofeev model with the value of parameter n = 4. The apparent activation energy of the hydrogen desorption reaction was decreased with the increase of milling time and the addition of nickel. It has been shown for the first time that two main processes (grinding and the catalytic effect) could be separately analyzed. It is concluded that for investigated short milling times, the catalytic effect of Ni is predominant.
T2  - International Journal of Hydrogen Energy
T1  - Hydrogen storage properties of MgH2–Tm: Ni-catalysis vs. mechanical milling
VL  - 54
SP  - 446
EP  - 456
DO  - 10.1016/j.ijhydene.2023.04.078
ER  - 
@article{
author = "Babić, Bojana and Prvulović, Milica and Filipović, Nenad and Mravik, Željko and Sekulić, Zorana and Milošević Govedarović, Sanja S. and Milanović, Igor",
year = "2023",
abstract = "The influence of the addition of nickel on hydrogen desorption from the MgH2–Ni composite was investigated. The composite powder was ball-milled for 15, 30 and 45 min and characterized by XRD, SEM-EDS, PSD, DSC and TPD methods. It was observed that the uniform distribution of nickel decreases hydrogen desorption temperature by more than 100 °C. A kinetic model for the hydrogen desorption process was also determined. The hydrogen desorption reaction in catalyzed samples is described by the Avrami-Erofeev model with the value of parameter n = 4. The apparent activation energy of the hydrogen desorption reaction was decreased with the increase of milling time and the addition of nickel. It has been shown for the first time that two main processes (grinding and the catalytic effect) could be separately analyzed. It is concluded that for investigated short milling times, the catalytic effect of Ni is predominant.",
journal = "International Journal of Hydrogen Energy",
title = "Hydrogen storage properties of MgH2–Tm: Ni-catalysis vs. mechanical milling",
volume = "54",
pages = "446-456",
doi = "10.1016/j.ijhydene.2023.04.078"
}
Babić, B., Prvulović, M., Filipović, N., Mravik, Ž., Sekulić, Z., Milošević Govedarović, S. S.,& Milanović, I.. (2023). Hydrogen storage properties of MgH2–Tm: Ni-catalysis vs. mechanical milling. in International Journal of Hydrogen Energy, 54, 446-456.
https://doi.org/10.1016/j.ijhydene.2023.04.078
Babić B, Prvulović M, Filipović N, Mravik Ž, Sekulić Z, Milošević Govedarović SS, Milanović I. Hydrogen storage properties of MgH2–Tm: Ni-catalysis vs. mechanical milling. in International Journal of Hydrogen Energy. 2023;54:446-456.
doi:10.1016/j.ijhydene.2023.04.078 .
Babić, Bojana, Prvulović, Milica, Filipović, Nenad, Mravik, Željko, Sekulić, Zorana, Milošević Govedarović, Sanja S., Milanović, Igor, "Hydrogen storage properties of MgH2–Tm: Ni-catalysis vs. mechanical milling" in International Journal of Hydrogen Energy, 54 (2023):446-456,
https://doi.org/10.1016/j.ijhydene.2023.04.078 . .

DSpace software copyright © 2002-2015  DuraSpace
About the VinaR Repository | Send Feedback

re3dataOpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About the VinaR Repository | Send Feedback

re3dataOpenAIRERCUB