VinaR - Repozitorijum Instituta za nuklearne nauke Vinča
    • English
    • Српски
    • Српски (Serbia)
  • Srpski (latinica) 
    • Engleski
    • Srpski (ćirilica)
    • Srpski (latinica)
  • Prijava
Pregled zapisa 
  •   VinaR
  • Vinča
  • Radovi istraživača
  • Pregled zapisa
  •   VinaR
  • Vinča
  • Radovi istraživača
  • Pregled zapisa
JavaScript is disabled for your browser. Some features of this site may not work without it.

Methionine Capped Nanoparticles as Acetylcholinesterase Inhibitors

Samo za registrovane korisnike
2023
Autori
Laban, Bojana B.
Lazarević-Pašti, Tamara
Veljović, Đorđe
Marković, Mirjana
Klekotka, Urszula
Članak u časopisu (Objavljena verzija)
Metapodaci
Prikaz svih podataka o dokumentu
Apstrakt
The silver and gold L-methionine capped nanoparticles (Ag and Au @LM NPs) were analyzed as prospective acetylcholinesterase (AChE) inhibitors to test their potential in the treatment of cognitive impairment in depression and Alzheimer's disease. The stability of NPs, and their ability to inhibit AChE were studied by UV-Vis and FTIR spectrophotometry. At the same time, TEM and SEM measurements, DLS, and zeta potential measurements were employed in the structural characterization of NPs. Nearly spherical, negatively charged Ag and Au @LM NPs, with 17 nm and 31 nm in diameter, respectively, showed moderate inhibitory potential toward AChE in the given frame of investigated concentrations. For both NPs IC50 is not reached. Furthermore, the adsorption of enzyme molecules on the surface of Ag and Au @LM NPs was demonstrated. Hence, our assumption is that inhibition of AChE is caused by blockage of the enzyme‘s active site due to the steric hindrance of NPs.
Ključne reči:
acetylcholinesterase / Alzheimer‘s disease / gold / inhibition / nanoparticles / silver
Izvor:
European Journal of Inorganic Chemistry, 2023, e202200754-
Finansiranje / projekti:
  • Ministarstvo nauke, tehnološkog razvoja i inovacija Republike Srbije, institucionalno finansiranje - 200123 (Univerzitet u Prištini sa privremenim sedištem u Kosovskoj Mitrovici, Prirodno-matematički fakultet) (RS-MESTD-inst-2020-200123)
  • Ministarstvo nauke, tehnološkog razvoja i inovacija Republike Srbije, institucionalno finansiranje - 200017 (Univerzitet u Beogradu, Institut za nuklearne nauke Vinča, Beograd-Vinča) (RS-MESTD-inst-2020-200017)
Napomena:
  • Cover Feature: Methionine Capped Nanoparticles as Acetylcholinesterase Inhibitors (Eur. J. Inorg. Chem. 12/2023) : https://doi.org/10.1002/ejic.202300151

DOI: 10.1002/ejic.202200754

ISSN: 1434-1948

WoS: 000945620400001

Scopus: 2-s2.0-85149470213
[ Google Scholar ]
1
URI
https://vinar.vin.bg.ac.rs/handle/123456789/10740
Kolekcije
  • 050 - Laboratorija za fizičku hemiju
  • 060 - Laboratorija za hemijsku dinamiku i permanentno obrazovanje
  • Radovi istraživača
Institucija/grupa
Vinča
TY  - JOUR
AU  - Laban, Bojana B.
AU  - Lazarević-Pašti, Tamara
AU  - Veljović, Đorđe
AU  - Marković, Mirjana
AU  - Klekotka, Urszula
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10740
AB  - The silver and gold L-methionine capped nanoparticles (Ag and Au @LM NPs) were analyzed as prospective acetylcholinesterase (AChE) inhibitors to test their potential in the treatment of cognitive impairment in depression and Alzheimer's disease. The stability of NPs, and their ability to inhibit AChE were studied by UV-Vis and FTIR spectrophotometry. At the same time, TEM and SEM measurements, DLS, and zeta potential measurements were employed in the structural characterization of NPs. Nearly spherical, negatively charged Ag and Au @LM NPs, with 17 nm and 31 nm in diameter, respectively, showed moderate inhibitory potential toward AChE in the given frame of investigated concentrations. For both NPs IC50 is not reached. Furthermore, the adsorption of enzyme molecules on the surface of Ag and Au @LM NPs was demonstrated. Hence, our assumption is that inhibition of AChE is caused by blockage of the enzyme‘s active site due to the steric hindrance of NPs.
T2  - European Journal of Inorganic Chemistry
T1  - Methionine Capped Nanoparticles as Acetylcholinesterase Inhibitors
SP  - e202200754
DO  - 10.1002/ejic.202200754
ER  - 
@article{
author = "Laban, Bojana B. and Lazarević-Pašti, Tamara and Veljović, Đorđe and Marković, Mirjana and Klekotka, Urszula",
year = "2023",
abstract = "The silver and gold L-methionine capped nanoparticles (Ag and Au @LM NPs) were analyzed as prospective acetylcholinesterase (AChE) inhibitors to test their potential in the treatment of cognitive impairment in depression and Alzheimer's disease. The stability of NPs, and their ability to inhibit AChE were studied by UV-Vis and FTIR spectrophotometry. At the same time, TEM and SEM measurements, DLS, and zeta potential measurements were employed in the structural characterization of NPs. Nearly spherical, negatively charged Ag and Au @LM NPs, with 17 nm and 31 nm in diameter, respectively, showed moderate inhibitory potential toward AChE in the given frame of investigated concentrations. For both NPs IC50 is not reached. Furthermore, the adsorption of enzyme molecules on the surface of Ag and Au @LM NPs was demonstrated. Hence, our assumption is that inhibition of AChE is caused by blockage of the enzyme‘s active site due to the steric hindrance of NPs.",
journal = "European Journal of Inorganic Chemistry",
title = "Methionine Capped Nanoparticles as Acetylcholinesterase Inhibitors",
pages = "e202200754",
doi = "10.1002/ejic.202200754"
}
Laban, B. B., Lazarević-Pašti, T., Veljović, Đ., Marković, M.,& Klekotka, U.. (2023). Methionine Capped Nanoparticles as Acetylcholinesterase Inhibitors. in European Journal of Inorganic Chemistry, e202200754.
https://doi.org/10.1002/ejic.202200754
Laban BB, Lazarević-Pašti T, Veljović Đ, Marković M, Klekotka U. Methionine Capped Nanoparticles as Acetylcholinesterase Inhibitors. in European Journal of Inorganic Chemistry. 2023;:e202200754.
doi:10.1002/ejic.202200754 .
Laban, Bojana B., Lazarević-Pašti, Tamara, Veljović, Đorđe, Marković, Mirjana, Klekotka, Urszula, "Methionine Capped Nanoparticles as Acetylcholinesterase Inhibitors" in European Journal of Inorganic Chemistry (2023):e202200754,
https://doi.org/10.1002/ejic.202200754 . .

DSpace software copyright © 2002-2015  DuraSpace
O repozitorijumu VinaR | Pošaljite zapažanja

re3dataOpenAIRERCUB
 

 

Kompletan repozitorijumGrupeAutoriNasloviTemeOva institucijaAutoriNasloviTeme

Statistika

Pregled statistika

DSpace software copyright © 2002-2015  DuraSpace
O repozitorijumu VinaR | Pošaljite zapažanja

re3dataOpenAIRERCUB