VinaR - Repository of the Vinča Nuclear Institute
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   Vinar
  • Vinča
  • Radovi istraživača
  • View Item
  •   Vinar
  • Vinča
  • Radovi istraživača
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Multicomponent solid solution with pyrochlore structure

Solución sólida multicomponente con estructura de pirocloro

Thumbnail
2023
Download 🢃
Main article [PDF] (2.523Mb)
Authors
Matović, Branko
Maletaškić, Jelena
Maksimović, Vesna
Dimitrijević, Stevan P.
Todorović, Bratislav
Pejić, Milan
Zagorac, Dejan
Zagorac, Jelena B.
Zeng, Yu-Ping
Cvijović-Alagić, Ivana
Article (Published version)
Metadata
Show full item record
Abstract
Multicomponent oxide with pyrochlore structure (A2B2O7), containing 7 different A-site cations and 3 B-site cations in equiatomic amounts, was synthesized. Powders with nominal composition (La1/7Sm1/7Nd1/7Pr1/7Y1/7Gd1/7Yb1/7)2(Sn1/3Hf1/3Zr1/3)2O7 were fabricated through a reaction of metal nitrates (A-site) and metal chlorides (B-site) with sodium hydroxide during the solid state displacement reaction. Room temperature synthesis initially resulted in the obtainment of amorphous powders, which crystallized after subsequent calcination to form single crystalline compounds. Crystalline high-entropy ceramic powders formation took place at temperatures as low as 750 °C. During calcination, defective fluorite (F-A2B2O7) and crystal pyrochlore (Py-A2B2O7) structures coexist. A large number of cations induce the obtainment of stable high-entropy pyrochlores. Results showed that sintering at 1650 °C lead to pure crystalline single-phase pyrochlore formation. High-density ceramic, free of additi...ves, was obtained after powders were compacted and subjected to pressureless sintering at 1650 °C. Multicomponent pyrochlore structure was investigated using the theoretical and experimental multi-methodological approach.

Keywords:
Density functional theory / High-entropy oxide / Microstructure / Phase evolution / Pyrochlore
Source:
Boletin de la Sociedad Espanola de Ceramica y Vidrio, 2023, 62, 6, 515-526
Funding / projects:
  • Ministry of Science, Technological Development and Innovation of the Republic of Serbia, institutional funding - 200017 (University of Belgrade, Institute of Nuclear Sciences 'Vinča', Belgrade-Vinča) (RS-MESTD-inst-2020-200017)
  • Ministry of Science, Technological Development and Innovation of the Republic of Serbia, institutional funding - 200135 (University of Belgrade, Faculty of Technology and Metallurgy) (RS-MESTD-inst-2020-200135)
  • Chinese Academy of Sciences [2021VEA0003]

DOI: 10.1016/j.bsecv.2023.01.005

ISSN: 0366-3175

WoS: 001136622500001

Scopus: 2-s2.0-85148374200
[ Google Scholar ]
8
7
URI
https://vinar.vin.bg.ac.rs/handle/123456789/10697
Collections
  • CEXTREME LAB
  • 170 - Laboratorija za materijale
  • Radovi istraživača
Institution/Community
Vinča
TY  - JOUR
AU  - Matović, Branko
AU  - Maletaškić, Jelena
AU  - Maksimović, Vesna
AU  - Dimitrijević, Stevan P.
AU  - Todorović, Bratislav
AU  - Pejić, Milan
AU  - Zagorac, Dejan
AU  - Zagorac, Jelena B.
AU  - Zeng, Yu-Ping
AU  - Cvijović-Alagić, Ivana
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10697
AB  - Multicomponent oxide with pyrochlore structure (A2B2O7), containing 7 different A-site cations and 3 B-site cations in equiatomic amounts, was synthesized. Powders with nominal composition (La1/7Sm1/7Nd1/7Pr1/7Y1/7Gd1/7Yb1/7)2(Sn1/3Hf1/3Zr1/3)2O7 were fabricated through a reaction of metal nitrates (A-site) and metal chlorides (B-site) with sodium hydroxide during the solid state displacement reaction. Room temperature synthesis initially resulted in the obtainment of amorphous powders, which crystallized after subsequent calcination to form single crystalline compounds. Crystalline high-entropy ceramic powders formation took place at temperatures as low as 750 °C. During calcination, defective fluorite (F-A2B2O7) and crystal pyrochlore (Py-A2B2O7) structures coexist. A large number of cations induce the obtainment of stable high-entropy pyrochlores. Results showed that sintering at 1650 °C lead to pure crystalline single-phase pyrochlore formation. High-density ceramic, free of additives, was obtained after powders were compacted and subjected to pressureless sintering at 1650 °C. Multicomponent pyrochlore structure was investigated using the theoretical and experimental multi-methodological approach.
T2  - Boletin de la Sociedad Espanola de Ceramica y Vidrio
T1  - Multicomponent solid solution with pyrochlore structure
T1  - Solución sólida multicomponente con estructura de pirocloro
VL  - 62
IS  - 6
SP  - 515
EP  - 526
DO  - 10.1016/j.bsecv.2023.01.005
ER  - 
@article{
author = "Matović, Branko and Maletaškić, Jelena and Maksimović, Vesna and Dimitrijević, Stevan P. and Todorović, Bratislav and Pejić, Milan and Zagorac, Dejan and Zagorac, Jelena B. and Zeng, Yu-Ping and Cvijović-Alagić, Ivana",
year = "2023",
abstract = "Multicomponent oxide with pyrochlore structure (A2B2O7), containing 7 different A-site cations and 3 B-site cations in equiatomic amounts, was synthesized. Powders with nominal composition (La1/7Sm1/7Nd1/7Pr1/7Y1/7Gd1/7Yb1/7)2(Sn1/3Hf1/3Zr1/3)2O7 were fabricated through a reaction of metal nitrates (A-site) and metal chlorides (B-site) with sodium hydroxide during the solid state displacement reaction. Room temperature synthesis initially resulted in the obtainment of amorphous powders, which crystallized after subsequent calcination to form single crystalline compounds. Crystalline high-entropy ceramic powders formation took place at temperatures as low as 750 °C. During calcination, defective fluorite (F-A2B2O7) and crystal pyrochlore (Py-A2B2O7) structures coexist. A large number of cations induce the obtainment of stable high-entropy pyrochlores. Results showed that sintering at 1650 °C lead to pure crystalline single-phase pyrochlore formation. High-density ceramic, free of additives, was obtained after powders were compacted and subjected to pressureless sintering at 1650 °C. Multicomponent pyrochlore structure was investigated using the theoretical and experimental multi-methodological approach.",
journal = "Boletin de la Sociedad Espanola de Ceramica y Vidrio",
title = "Multicomponent solid solution with pyrochlore structure, Solución sólida multicomponente con estructura de pirocloro",
volume = "62",
number = "6",
pages = "515-526",
doi = "10.1016/j.bsecv.2023.01.005"
}
Matović, B., Maletaškić, J., Maksimović, V., Dimitrijević, S. P., Todorović, B., Pejić, M., Zagorac, D., Zagorac, J. B., Zeng, Y.,& Cvijović-Alagić, I.. (2023). Multicomponent solid solution with pyrochlore structure. in Boletin de la Sociedad Espanola de Ceramica y Vidrio, 62(6), 515-526.
https://doi.org/10.1016/j.bsecv.2023.01.005
Matović B, Maletaškić J, Maksimović V, Dimitrijević SP, Todorović B, Pejić M, Zagorac D, Zagorac JB, Zeng Y, Cvijović-Alagić I. Multicomponent solid solution with pyrochlore structure. in Boletin de la Sociedad Espanola de Ceramica y Vidrio. 2023;62(6):515-526.
doi:10.1016/j.bsecv.2023.01.005 .
Matović, Branko, Maletaškić, Jelena, Maksimović, Vesna, Dimitrijević, Stevan P., Todorović, Bratislav, Pejić, Milan, Zagorac, Dejan, Zagorac, Jelena B., Zeng, Yu-Ping, Cvijović-Alagić, Ivana, "Multicomponent solid solution with pyrochlore structure" in Boletin de la Sociedad Espanola de Ceramica y Vidrio, 62, no. 6 (2023):515-526,
https://doi.org/10.1016/j.bsecv.2023.01.005 . .

DSpace software copyright © 2002-2015  DuraSpace
About the VinaR Repository | Send Feedback

re3dataOpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About the VinaR Repository | Send Feedback

re3dataOpenAIRERCUB