VinaR - Repository of the Vinča Nuclear Institute
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   Vinar
  • Vinča
  • Radovi istraživača
  • View Item
  •   Vinar
  • Vinča
  • Radovi istraživača
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Picosecond laser-assisted synthesis of silver nanoparticles with high practical application as electroanalytical sensor

Authorized Users Only
2022
Authors
Ognjanović, Miloš
Nikolić, Katarina
Radenković, Marina
Lolić, Aleksandar Đ.
Stanković, Dalibor M.
Živković, Sanja
Article (Published version)
Metadata
Show full item record
Abstract
Gallic acid (GA) is one of the most important and present natural phenolic compounds due to its well-known biological properties, and its detection and monitoring is of great importance. Silver nanoparticles (AgNPs) are one of the most studied metallic nanomaterials used in various fields, from biomedical applications to electrochemical sensing devices. In this work, we used the pulsed laser ablation technique in liquid for the one-step preparation of nanoparticles of silver from a pure silver plate base in N,N-dimethylformamide. Obtained nanomaterial was characterized using morphological and electrochemical methods and used for modification of screen-printed carbon electrodes (SPCE). Successful immobilization at the surface is confirmed using the surface profiling method. A newly obtained sensor was used for the detection of GA. After parameters optimization, a differential pulse voltammetric protocol was developed, using two approaches - concentration vs. current (GA determination) a...nd peak area vs. current (estimation of the antioxidant capacity). For the first approach sensor linearity was found to be in the range from 0.50 µM to 10 µM, with the limit of detection (LOD) of 0.16 µM and limit of quantification (LOQ) of 0.50 µM. In the second system operating linear range was the same, while LOD and LOQ were 0.11 µM and 0.34 µM, respectively. Practical application of the method was tested using two approaches: direct measurement of gallic acid in biological fluids and estimation of the antioxidant capacity and food quality purpose.

Keywords:
Gallic acid / Modified screen-printed carbon electrode / Pulsed laser ablation in liquids / Silver nanoparticles
Source:
Surfaces and Interfaces, 2022, 35, 102464-
Funding / projects:
  • Ministry of Science, Technological Development and Innovation of the Republic of Serbia, institutional funding - 200017 (University of Belgrade, Institute of Nuclear Sciences 'Vinča', Belgrade-Vinča) (RS-MESTD-inst-2020-200017)
  • Eureka project E! [13303 MED-BIO-TEST]

DOI: 10.1016/j.surfin.2022.102464

ISSN: 2468-0230

WoS: 001004024600001

Scopus: 2-s2.0-85141539824
[ Google Scholar ]
3
1
URI
https://vinar.vin.bg.ac.rs/handle/123456789/10501
Collections
  • 020 - Laboratorija za teorijsku fiziku i fiziku kondenzovane materije
  • 050 - Laboratorija za fizičku hemiju
  • 070 - Laboratorija za radioizotope
  • Radovi istraživača
Institution/Community
Vinča
TY  - JOUR
AU  - Ognjanović, Miloš
AU  - Nikolić, Katarina
AU  - Radenković, Marina
AU  - Lolić, Aleksandar Đ.
AU  - Stanković, Dalibor M.
AU  - Živković, Sanja
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10501
AB  - Gallic acid (GA) is one of the most important and present natural phenolic compounds due to its well-known biological properties, and its detection and monitoring is of great importance. Silver nanoparticles (AgNPs) are one of the most studied metallic nanomaterials used in various fields, from biomedical applications to electrochemical sensing devices. In this work, we used the pulsed laser ablation technique in liquid for the one-step preparation of nanoparticles of silver from a pure silver plate base in N,N-dimethylformamide. Obtained nanomaterial was characterized using morphological and electrochemical methods and used for modification of screen-printed carbon electrodes (SPCE). Successful immobilization at the surface is confirmed using the surface profiling method. A newly obtained sensor was used for the detection of GA. After parameters optimization, a differential pulse voltammetric protocol was developed, using two approaches - concentration vs. current (GA determination) and peak area vs. current (estimation of the antioxidant capacity). For the first approach sensor linearity was found to be in the range from 0.50 µM to 10 µM, with the limit of detection (LOD) of 0.16 µM and limit of quantification (LOQ) of 0.50 µM. In the second system operating linear range was the same, while LOD and LOQ were 0.11 µM and 0.34 µM, respectively. Practical application of the method was tested using two approaches: direct measurement of gallic acid in biological fluids and estimation of the antioxidant capacity and food quality purpose.
T2  - Surfaces and Interfaces
T1  - Picosecond laser-assisted synthesis of silver nanoparticles with high practical application as electroanalytical sensor
VL  - 35
SP  - 102464
DO  - 10.1016/j.surfin.2022.102464
ER  - 
@article{
author = "Ognjanović, Miloš and Nikolić, Katarina and Radenković, Marina and Lolić, Aleksandar Đ. and Stanković, Dalibor M. and Živković, Sanja",
year = "2022",
abstract = "Gallic acid (GA) is one of the most important and present natural phenolic compounds due to its well-known biological properties, and its detection and monitoring is of great importance. Silver nanoparticles (AgNPs) are one of the most studied metallic nanomaterials used in various fields, from biomedical applications to electrochemical sensing devices. In this work, we used the pulsed laser ablation technique in liquid for the one-step preparation of nanoparticles of silver from a pure silver plate base in N,N-dimethylformamide. Obtained nanomaterial was characterized using morphological and electrochemical methods and used for modification of screen-printed carbon electrodes (SPCE). Successful immobilization at the surface is confirmed using the surface profiling method. A newly obtained sensor was used for the detection of GA. After parameters optimization, a differential pulse voltammetric protocol was developed, using two approaches - concentration vs. current (GA determination) and peak area vs. current (estimation of the antioxidant capacity). For the first approach sensor linearity was found to be in the range from 0.50 µM to 10 µM, with the limit of detection (LOD) of 0.16 µM and limit of quantification (LOQ) of 0.50 µM. In the second system operating linear range was the same, while LOD and LOQ were 0.11 µM and 0.34 µM, respectively. Practical application of the method was tested using two approaches: direct measurement of gallic acid in biological fluids and estimation of the antioxidant capacity and food quality purpose.",
journal = "Surfaces and Interfaces",
title = "Picosecond laser-assisted synthesis of silver nanoparticles with high practical application as electroanalytical sensor",
volume = "35",
pages = "102464",
doi = "10.1016/j.surfin.2022.102464"
}
Ognjanović, M., Nikolić, K., Radenković, M., Lolić, A. Đ., Stanković, D. M.,& Živković, S.. (2022). Picosecond laser-assisted synthesis of silver nanoparticles with high practical application as electroanalytical sensor. in Surfaces and Interfaces, 35, 102464.
https://doi.org/10.1016/j.surfin.2022.102464
Ognjanović M, Nikolić K, Radenković M, Lolić AĐ, Stanković DM, Živković S. Picosecond laser-assisted synthesis of silver nanoparticles with high practical application as electroanalytical sensor. in Surfaces and Interfaces. 2022;35:102464.
doi:10.1016/j.surfin.2022.102464 .
Ognjanović, Miloš, Nikolić, Katarina, Radenković, Marina, Lolić, Aleksandar Đ., Stanković, Dalibor M., Živković, Sanja, "Picosecond laser-assisted synthesis of silver nanoparticles with high practical application as electroanalytical sensor" in Surfaces and Interfaces, 35 (2022):102464,
https://doi.org/10.1016/j.surfin.2022.102464 . .

DSpace software copyright © 2002-2015  DuraSpace
About the VinaR Repository | Send Feedback

re3dataOpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About the VinaR Repository | Send Feedback

re3dataOpenAIRERCUB