Приказ основних података о документу

dc.creatorIvić, Zoran
dc.creatorPržulj, Željko
dc.creatorČevizović, Dalibor
dc.creatorTsironis, G. P.
dc.date.accessioned2026-02-02T12:57:47Z
dc.date.available2026-02-01
dc.date.issued2026
dc.identifier.issn1089-7682
dc.identifier.urihttps://vinar.vin.bg.ac.rs/handle/123456789/16116
dc.description.abstractWe examine theoretically the transparency of electromagnetic pulses through an infinite one-dimensional array of coupled optical microcavities uniformly filled with superconducting qubits-one per cavity. Two types of hybrid matter-light waves, i.e., polaritons and self-induced transparency solitons, govern the transparency of electromagnetic radiation in these media. The spectrum of linear excitations, i.e., polaritons, consists of two branches separated by a relatively wide forbidden band. In the nonlinear regime, the dispersion relation of the carrier wave is determined by soliton width that is controlled by the reciprocal qubit frequency. The separate dispersion curves lie within the polariton forbidden band. Soliton transparency requires that the carrier wave frequency exceeds a threshold value; the latter depends strongly on the pulse width. We find that for pulses with widths ranging from ultrashort to an intermediate limit, the threshold is of the order of the gap frequency value in the photon spectrum. For wider pulses, the threshold frequency gradually decreases to values that are toward the edge of the polariton lower band, provided the soliton width is larger than a critical value. In the overcritical regime, the bandgap appears in the spectrum of the soliton carrier wave, while a twin transparency window appears in the soliton pulse dispersion law. A possible experimental observation of the predicted effects within the proposed setup would be of interest in understanding the properties of self-induced transparency in general and applications in the design of quantum technological devices.en
dc.language.isoen
dc.relationinfo:eu-repo/grantAgreement/MESTD/inst-2020/200017/RS//
dc.relation"Vinča" Institute – special grant No. 104-64-2/2022-020
dc.relationStavros Niarchos Foundation (SNF) and the Hellenic Foundation for Research and Innovation (H.F.R.I.) under the 5th Call of “Science and Society” Action – “Always Strive for Excellence – Theodore Papazoglou” (Project Number: 011496)
dc.relation.isreferencedbyhttps://vinar.vin.bg.ac.rs/handle/123456789/16104
dc.relation.isreferencedbyhttp://dx.doi.org/10.1063/5.0295729
dc.rightsembargoedAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceChaos
dc.subjectElectromagnetic pulseen
dc.subjectElectromagnetic radiationen
dc.subjectMetamaterialsen
dc.subjectPhoton spectraen
dc.subjectMicroopticsen
dc.subjectQuasiparticleen
dc.subjectSoliton solutionsen
dc.subjectQuantum computingen
dc.subjectQuantum informationen
dc.subjectQuantum opticsen
dc.titleDispersion-managed electromagnetic pulse transparency in arrays of coupled microcavitiesen
dc.typearticleen
dc.rights.licenseBY
dc.citation.volume36
dc.citation.issue1
dc.citation.spage013136
dc.identifier.doi10.1063/5.0295729
dc.citation.rankM21p
dc.description.otherThis is the peer-reviewed version of the article: Ivić, Z., Pržulj, Ž., Chevizovich, D., & Tsironis, G. P. (2026). Dispersion-managed electromagnetic pulse transparency in arrays of coupled microcavities. Chaos: An Interdisciplinary Journal of Nonlinear Science, 36(1). [http://dx.doi.org/10.1063/5.0295729]en
dc.type.versionacceptedVersion
dc.identifier.scopus2-s2.0-105028457530
dc.identifier.fulltexthttp://vinar.vin.bg.ac.rs/bitstream/id/45748/Dispersion-managed_electromagnetic_pulse_transparency_in_2026_merged.pdf
dc.relation.innvtheme104-64-2/2022-020


Документи

Thumbnail

Овај документ се појављује у следећим колекцијама

Приказ основних података о документу