Приказ основних података о документу

dc.creatorLiu, Zhiheng
dc.creatorWang, Hulin
dc.creatorDong, Runchao
dc.creatorZhang, Jia
dc.creatorYin, Hongxin
dc.creatorLiu, Genqiang
dc.creatorLi, Weijun
dc.creatorZhang, Dongdong
dc.creatorGloginjić, Marko
dc.creatorErich, Marko
dc.creatorYang, Weiyou
dc.creatorPetrović, Srđan
dc.creatorChen, Shanliang
dc.date.accessioned2026-02-02T07:41:10Z
dc.date.available2026-02-02T07:41:10Z
dc.date.issued2026
dc.identifier.issn2195-1071
dc.identifier.urihttps://vinar.vin.bg.ac.rs/handle/123456789/16106
dc.description.abstractThe precise tailoring of bandgap structures as well as carrier separation and transport behavior via heterojunction engineering can provide a practical and viable pathway for enhancing the performance of low-dimensional semiconductor devices. In this study, a highly photosensitive photoelectrochemical (PEC) ultraviolet (UV) photodetector (PD) based on a SiC/ZnO heterojunction is explored. The surfaces of SiC nanowires are successfully modified using high-quality ZnO nanospheres via a simple hydrothermal process. The as-constructed SiC/ZnO heterojunction nanowire PEC UV PD achieves high photodetection performance—high responsivity (15.76 mA W−1), high detectivity (1.827 × 1010 Jones), excellent external quantum efficiency (5.21%), and fast rise/decay times (186/454 ms), under 375-nm UV illumination. Remarkably, the device exhibits a high photoresponse under different solution concentrations, temperature conditions, and excellent aging stability over long-term operation. Its highly sensitive and reliable photodetection performance could be attributed primarily to the synergy among the type-II charge transfer pathways formed at the SiC/ZnO heterojunction, enhanced photogenerated-carrier separation efficiency, and improved light–matter interactions enabled by the large specific surface area of the ZnO nanospheres. Overall, this study establishes a paradigm for developing highly sensitive PEC PDs suitable for optical communication under harsh underwater conditions, thereby advancing heterojunction and interfacial engineering strategies for next-generation optoelectronics.en
dc.language.isoen
dc.relationNational Natural Science Foundation of China (52372063)
dc.relationNational Natural Science Foundation of China (51702174)
dc.relationNatural Science Foundation of Zhejiang Province (LMS26E02008)
dc.relationNingbo Science and Technology Innovation Leading Talent Project (2023QL010)
dc.relationChina Postdoctoral Science Founded Project (2023M730391)
dc.relationYoung Elite Scientists Sponsorship Program by CAST (2023QNRC001)
dc.relationState Key Laboratory of Powder Metallurgy, China (Sklpm-KF-2025024)
dc.relationKey Project for Science and Technology Innovation in Yongjiang 2035 of the Ningbo Municipal Government (2024Z030)
dc.rightsrestrictedAccess
dc.sourceAdvanced Optical Materials
dc.subjectheterojunction engineeringen
dc.subjectphotoelectrochemical devicesen
dc.subjectSiC/ZnO heterojunction nanowiresen
dc.subjectultraviolet photodetectionen
dc.subjectunderwater applicationen
dc.titleHighly Photosensitive and Stable SiC/ZnO Nanowire Photoelectrochemical Ultraviolet Photodetector Based on Heterojunction Engineering for Reliable Complex Underwater Applicationen
dc.typearticleen
dc.rights.licenseARR
dc.citation.issueInPress
dc.citation.spagee03059
dc.identifier.doi10.1002/adom.202503059
dc.citation.rankM21a
dc.type.versionpublishedVersion
dc.identifier.scopus2-s2.0-105027948279


Документи

Thumbnail

Овај документ се појављује у следећим колекцијама

Приказ основних података о документу