Приказ основних података о документу

dc.creatorMaluckov, Aleksandra
dc.creatorStojanović, Danka
dc.creatorMiletić, Marjan
dc.creatorIvanović, Marija D.
dc.creatorHadžievski, Ljupčo
dc.creatorPetrović, Jovana S.
dc.date.accessioned2026-01-26T08:48:16Z
dc.date.available2026-01-26T08:48:16Z
dc.date.issued2026
dc.identifier.issn1089-7682
dc.identifier.urihttps://vinar.vin.bg.ac.rs/handle/123456789/16089
dc.description.abstractWe investigate the recovery dynamics of healthy cardiac activity after physical exertion using multimodal biosignals recorded with a polycardiograph. Multifractal features derived from the singularity spectrum capture the scale-invariant properties of cardiovascular regulation. Five supervised classification algorithms-Logistic Regression (LogReg), Support Vector Machine with radial basis function kernel, k-Nearest Neighbors, Decision Tree, and Random Forest-were evaluated to distinguish recovery states in a small, imbalanced dataset. Our results show that multifractal analysis, combined with multimodal sensing, yields reliable features for characterizing recovery and points toward nonlinear diagnostic methods for heart conditions.en
dc.language.isoen
dc.relationinfo:eu-repo/grantAgreement/ScienceFundRS/Ideje/7754338/RS//
dc.relationinfo:eu-repo/grantAgreement/MESTD/inst-2020/200017/RS//
dc.rightsmetadata only accesssr
dc.sourceChaos
dc.subjectNon linear dynamicsen
dc.subjectFractalsen
dc.subjectMATLABen
dc.subjectMachine learningen
dc.subjectHeart rateen
dc.titleMultifractal features of multimodal cardiac signals: Nonlinear dynamics of exercise recoveryen
dc.typearticleen
dc.rights.licenseARR
dc.citation.volume36
dc.citation.issue1
dc.citation.spage013120
dc.identifier.doi10.1063/5.0303657
dc.citation.rankM21p
dc.description.otherPeer-reviewed version available at: [https://vinar.vin.bg.ac.rs/handle/123456789/16093]en
dc.type.versionpublishedVersion
dc.identifier.scopus2-s2.0-105027196848


Документи

ДатотекеВеличинаФорматПреглед

Уз овај запис нема датотека.

Овај документ се појављује у следећим колекцијама

  • Radovi istraživača
    Researchers' publications
  • SensSmart
    [IDEJE] Multi-SENSor SysteM and ARTificial intelligence in service of heart failure diagnosis

Приказ основних података о документу