ВинаР - Репозиторијум Института за нуклеарне науке Винча
    • English
    • Српски
    • Српски (Serbia)
  • Српски (ћирилица) 
    • Енглески
    • Српски (ћирилица)
    • Српски (латиница)
  • Пријава
Преглед записа 
  •   ВинаР
  • Vinča
  • Research Data
  • Преглед записа
  •   ВинаР
  • Vinča
  • Research Data
  • Преглед записа
JavaScript is disabled for your browser. Some features of this site may not work without it.

Domain-specific Word2vec-based trained models - Chem300, Phys300, MatSci200, MatSci300, and Mixed300

Нема приказа
Аутори
Radaković, Jana
Batalović, Katarina
Модел (Објављена верзија)
Метаподаци
Приказ свих података о документу
Апстракт
The repository contains materials science, chemistry, and physics-specialized unsupervised trained models. Word embeddings are generated by means of the Word2vec, a natural language processing technique comprised of language model architectures for fast and efficient learning of distributed representations of words. Continuous Skip-gram model architecture with a negative sampling strategy, as implemented in the Gensim library, is employed for model training. The word embeddings consisting of 200 and 300 vectorial components for materials science and 300 vectorial components for chemistry, physics, and mixed domain are here provided.
Кључне речи:
word2vec model / In-silico materials design / Word embeddings as autonomous predictors / Static word embeddings / Word embeddings variability / Materials stability / Materials informatics / Digital design / Cheminformatics / Natural language processing
Извор:
figshare, 2025
Напомена:
  • This digital object is hosted on the Figshare server due to its size and is available under the Creative Commons Attribution 4.0 International License.

DOI: 10.6084/m9.figshare.28740122.v1

[ Google Scholar ]
URI
https://vinar.vin.bg.ac.rs/handle/123456789/15178
Колекције
  • Research Data
Институција/група
Vinča
TY  - GEN
AU  - Radaković, Jana
AU  - Batalović, Katarina
PY  - 2025
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/15178
AB  - The repository contains materials science, chemistry, and physics-specialized unsupervised trained models. Word embeddings are generated by means of the Word2vec, a natural language processing technique comprised of language model architectures for fast and efficient learning of distributed representations of words. Continuous Skip-gram model architecture with a negative sampling strategy, as implemented in the Gensim library, is employed for model training. The word embeddings consisting of 200 and 300 vectorial components for materials science and 300 vectorial components for chemistry, physics, and mixed domain are here provided.
T2  - figshare
T1  - Domain-specific Word2vec-based trained models - Chem300, Phys300, MatSci200, MatSci300, and Mixed300
DO  - 10.6084/m9.figshare.28740122.v1
ER  - 
@misc{
author = "Radaković, Jana and Batalović, Katarina",
year = "2025",
abstract = "The repository contains materials science, chemistry, and physics-specialized unsupervised trained models. Word embeddings are generated by means of the Word2vec, a natural language processing technique comprised of language model architectures for fast and efficient learning of distributed representations of words. Continuous Skip-gram model architecture with a negative sampling strategy, as implemented in the Gensim library, is employed for model training. The word embeddings consisting of 200 and 300 vectorial components for materials science and 300 vectorial components for chemistry, physics, and mixed domain are here provided.",
journal = "figshare",
title = "Domain-specific Word2vec-based trained models - Chem300, Phys300, MatSci200, MatSci300, and Mixed300",
doi = "10.6084/m9.figshare.28740122.v1"
}
Radaković, J.,& Batalović, K.. (2025). Domain-specific Word2vec-based trained models - Chem300, Phys300, MatSci200, MatSci300, and Mixed300. in figshare.
https://doi.org/10.6084/m9.figshare.28740122.v1
Radaković J, Batalović K. Domain-specific Word2vec-based trained models - Chem300, Phys300, MatSci200, MatSci300, and Mixed300. in figshare. 2025;.
doi:10.6084/m9.figshare.28740122.v1 .
Radaković, Jana, Batalović, Katarina, "Domain-specific Word2vec-based trained models - Chem300, Phys300, MatSci200, MatSci300, and Mixed300" in figshare (2025),
https://doi.org/10.6084/m9.figshare.28740122.v1 . .

DSpace software copyright © 2002-2015  DuraSpace
О репозиторијуму ВинаР | Пошаљите запажања

re3dataOpenAIRERCUB
 

 

Комплетан репозиторијумГрупеАуториНасловиТемеОва институцијаАуториНасловиТеме

Статистика

Преглед статистика

DSpace software copyright © 2002-2015  DuraSpace
О репозиторијуму ВинаР | Пошаљите запажања

re3dataOpenAIRERCUB