Show simple item record

dc.creatorAnđelković, Ljubica
dc.creatorŠuljagić, Marija
dc.creatorPavlović, Vladimir
dc.creatorMraković, Ana
dc.creatorPanjan, Matjaž
dc.creatorKovač, Janez
dc.creatorTadić, Marin
dc.date.accessioned2025-02-27T12:50:11Z
dc.date.available2027-02-22
dc.date.issued2025
dc.identifier.issn1387-7003
dc.identifier.urihttps://vinar.vin.bg.ac.rs/handle/123456789/14463
dc.description.abstractThis study introduces a thermal decomposition synthesis method to synthesize bare and embedded cobalt ferrite nanoparticles in a silica matrix, enabling a direct comparison between them to examine agglomeration and particle size effects on magnetic properties. XRPD confirmed the cubic spinel structure, with reduced crystallinity in the composite due to the amorphous silica. FTIR analysis verified CoFe2O4 incorporation into silica, showing metal–oxygen (560–410 cm−1) and Si–O–Si (1030 cm−1) bonds. TEM revealed agglomerated particles (≈30 nm) in bare CoFe2O4, whereas the composite exhibited smaller (≈20 nm), dispersed nanoparticles within the silica. The XPS spectra confirm that the Fe and Co ions in both samples exhibit oxidation states of Fe3+ and Co2+. Magnetic characterization showed contrasting behaviors: bare CoFe2O4 exhibited higher coercivity at 300 K (1509 Oe) but lower at 5 K (7172 Oe) compared to the composite (1073 Oe and 8407 Oe, respectively). These trends were linked to particle size distributions, with the silica matrix promoting smaller superparamagnetic nanoparticles and reduced inter-particle interactions. These behaviors are driven by the interplay between superparamagnetic and ferrimagnetic nanoparticle populations. The silica plays a key role in controlling particle size, agglomeration and magnetic properties, offering insights into tailoring nanocomposites for data storage, biomedicine, and catalysis. Future work should optimize cobalt ferrite weight percentages in the silica matrix to achieve control over particle size and agglomeration.en
dc.language.isoen
dc.relationinfo:eu-repo/grantAgreement/MESTD/inst-2020/200026/RS//
dc.relationinfo:eu-repo/grantAgreement/MESTD/inst-2020/200116/RS//
dc.relationinfo:eu-repo/grantAgreement/MESTD/inst-2020/200017/RS//
dc.relationinfo:eu-repo/grantAgreement/ScienceFundRS/Prizma2023_PM/7551/RS//
dc.relationSerbian-Slovenian bilateral project - contract No: 337-00-110/2023-05/30
dc.relation.isversionofhttps://vinar.vin.bg.ac.rs/handle/123456789/14418
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.inoche.2025.114137
dc.rightsembargoedAccess
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourceInorganic Chemistry Communicationsen
dc.subjectThermal decomposition synthesisen
dc.subjectCobalt ferrite (CoFe2O4)en
dc.subjectAmorphous silicaen
dc.subjectMagnetic propertiesen
dc.subjectCoercivityen
dc.subjectParticle size effectsen
dc.titleSilica matrix-driven modulation of ferrite nanoparticles: Insights into synthesis, coercivity and magnetizationen
dc.typearticleen
dc.rights.licenseBY-NC-NDen
dc.citation.volume175
dc.citation.spage114137
dc.identifier.doi10.1016/j.inoche.2025.114137
dc.citation.rankM21a
dc.description.otherThis is the peer-reviewed version of the article: Andjelković, L., Šuljagić, M., Pavlović, V., Mraković, A., Panjan, M., Kovač, J., & Tadić, M. (2025). Silica matrix-driven modulation of ferrite nanoparticles: Insights into synthesis, coercivity and magnetization. Inorganic Chemistry Communications, 114137. [http://dx.doi.org/10.1016/j.inoche.2025.114137]en
dc.type.versionacceptedVersion
dc.identifier.scopus2-s2.0-85218122719


Files in this item

Thumbnail

This item appears in the following Collection(s)

  • Radovi istraživača
    Researchers' publications
  • DOMINANTMAG
    [PRIZMA] Development of epsilon – iron oxide – based nanocomposites: Towards the next – generation rare- earth – free magnets

Show simple item record