Приказ основних података о документу

dc.creatorGavrilović, Tamara
dc.creatorĐorđević, Vesna
dc.creatorPeriša, Jovana
dc.creatorMedić, Mina
dc.creatorRistić, Zoran
dc.creatorĆirić, Aleksandar
dc.creatorAntić, Željka
dc.creatorDramićanin, Miroslav
dc.date.accessioned2024-11-19T11:24:21Z
dc.date.available2024-11-19T11:24:21Z
dc.date.issued2024
dc.identifier.issn1996-1944
dc.identifier.urihttps://vinar.vin.bg.ac.rs/handle/123456789/13994
dc.description.abstractAccurate temperature measurement is critical across various scientific and industrial applications, necessitating advancements in thermometry techniques. This study explores luminescence thermometry, specifically utilizing machine learning methodologies to enhance temperature sensitivity and accuracy. We investigate the performance of principal component analysis (PCA) on the Eu3+-doped Y2Mo3O12 luminescent probe, contrasting it with the traditional luminescence intensity ratio (LIR) method. By employing PCA to analyze the full emission spectra collected at varying temperatures, we achieve an average accuracy (ΔT) of 0.9 K and a resolution (δT) of 1.0 K, significantly outperforming the LIR method, which yielded an average accuracy of 2.3 K and a resolution of 2.9 K. Our findings demonstrate that while the LIR method offers a maximum sensitivity (Sr) of 5‰ K⁻1 at 472 K, PCA’s systematic approach enhances the reliability of temperature measurements, marking a crucial advancement in luminescence thermometry. This innovative approach not only enriches the dataset analysis but also sets a new standard for temperature measurement precision. © 2024 by the authors.en
dc.relationinfo:eu-repo/grantAgreement/ScienceFundRS/Prizma2023_TT/7017/RS//
dc.relationinfo:eu-repo/grantAgreement/MESTD/inst-2020/200017/RS//
dc.rightsopenAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceMaterials
dc.subjectluminescence thermometryen
dc.subjectluminescence intensity ratioen
dc.subjectprincipal component analysisen
dc.subjecteuropiumen
dc.subjectY2Mo3O12en
dc.titleLuminescence Thermometry with Eu3+-Doped Y2Mo3O12: Comparison of Performance of Intensity Ratio and Machine Learning Temperature Read-Outsen
dc.typearticleen
dc.rights.licenseBY
dc.citation.volume17
dc.citation.issue21
dc.citation.spage5354
dc.identifier.doi10.3390/ma17215354
dc.citation.rankM21
dc.type.versionpublishedVersion
dc.identifier.scopus2-s2.0-85208459525
dc.identifier.fulltexthttp://vinar.vin.bg.ac.rs/bitstream/id/39102/materials-17-05354.pdf


Документи

Thumbnail

Овај документ се појављује у следећим колекцијама

  • Radovi istraživača
    Researchers' publications
  • REMTES
    [PRIZMA] Technology for remote temparature measurements in microfluidic devices

Приказ основних података о документу