COST Action [Project no. CA21159 (PhoBios)]

Link to this page

COST Action [Project no. CA21159 (PhoBios)]

Authors

Publications

Cell Response on Laser-Patterned Ti/Zr/Ti and Ti/Cu/Ti Multilayer Systems

Petrović, Suzana; Božinović, Nevena; Rajić, Vladimir; Stanisavljević Ninković, Danijela; Kisić, Danilo; Stevanović, Milena J.; Stratakis, Emmanuel

(2023)

TY  - JOUR
AU  - Petrović, Suzana
AU  - Božinović, Nevena
AU  - Rajić, Vladimir
AU  - Stanisavljević Ninković, Danijela
AU  - Kisić, Danilo
AU  - Stevanović, Milena J.
AU  - Stratakis, Emmanuel
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11368
AB  - Arranged patterns obtained via ultrafast laser processing on the surface of Ti/Cu/Ti/Si and Ti/Zr/Ti/Si thin-film systems are reported. Two differently designed multilayer thin films Ti/Cu/Ti/Si and Ti/Zr/Ti/Si were deposited on silicon using the ion sputtering method. The bioactive surfaces of these systems involve the formation of laser-induced periodic surface structures (LIPSS) in each of the laser-written lines of mesh patterns on 5 × 5 mm areas. The formation of nano- and micro-patterns with an ultra-thin oxide film on the surfaces was used to observe the effects of morphology and proliferation of the MRC-5 cell culture line. To determine whether Ti-based thin films have a toxic effect on living cells, an MTT assay was performed. The relative cytotoxic effect, as a percentage of surviving cells, showed that there was no difference in cell number between the Ti-based thin films and the control cells. There was also no difference in the viability of the MRC-5 cells, except for the Ti/Cu/Ti/Si system, where there was a slight 10% decrease in cell viability. © 2023 by the authors.
T2  - Coatings
T1  - Cell Response on Laser-Patterned Ti/Zr/Ti and Ti/Cu/Ti Multilayer Systems
VL  - 13
IS  - 6
SP  - 1107
DO  - 10.3390/coatings13061107
ER  - 
@article{
author = "Petrović, Suzana and Božinović, Nevena and Rajić, Vladimir and Stanisavljević Ninković, Danijela and Kisić, Danilo and Stevanović, Milena J. and Stratakis, Emmanuel",
year = "2023",
abstract = "Arranged patterns obtained via ultrafast laser processing on the surface of Ti/Cu/Ti/Si and Ti/Zr/Ti/Si thin-film systems are reported. Two differently designed multilayer thin films Ti/Cu/Ti/Si and Ti/Zr/Ti/Si were deposited on silicon using the ion sputtering method. The bioactive surfaces of these systems involve the formation of laser-induced periodic surface structures (LIPSS) in each of the laser-written lines of mesh patterns on 5 × 5 mm areas. The formation of nano- and micro-patterns with an ultra-thin oxide film on the surfaces was used to observe the effects of morphology and proliferation of the MRC-5 cell culture line. To determine whether Ti-based thin films have a toxic effect on living cells, an MTT assay was performed. The relative cytotoxic effect, as a percentage of surviving cells, showed that there was no difference in cell number between the Ti-based thin films and the control cells. There was also no difference in the viability of the MRC-5 cells, except for the Ti/Cu/Ti/Si system, where there was a slight 10% decrease in cell viability. © 2023 by the authors.",
journal = "Coatings",
title = "Cell Response on Laser-Patterned Ti/Zr/Ti and Ti/Cu/Ti Multilayer Systems",
volume = "13",
number = "6",
pages = "1107",
doi = "10.3390/coatings13061107"
}
Petrović, S., Božinović, N., Rajić, V., Stanisavljević Ninković, D., Kisić, D., Stevanović, M. J.,& Stratakis, E.. (2023). Cell Response on Laser-Patterned Ti/Zr/Ti and Ti/Cu/Ti Multilayer Systems. in Coatings, 13(6), 1107.
https://doi.org/10.3390/coatings13061107
Petrović S, Božinović N, Rajić V, Stanisavljević Ninković D, Kisić D, Stevanović MJ, Stratakis E. Cell Response on Laser-Patterned Ti/Zr/Ti and Ti/Cu/Ti Multilayer Systems. in Coatings. 2023;13(6):1107.
doi:10.3390/coatings13061107 .
Petrović, Suzana, Božinović, Nevena, Rajić, Vladimir, Stanisavljević Ninković, Danijela, Kisić, Danilo, Stevanović, Milena J., Stratakis, Emmanuel, "Cell Response on Laser-Patterned Ti/Zr/Ti and Ti/Cu/Ti Multilayer Systems" in Coatings, 13, no. 6 (2023):1107,
https://doi.org/10.3390/coatings13061107 . .