International Atomic Energy Agency [CRP F22070, Contract No. 23184]

Link to this page

International Atomic Energy Agency [CRP F22070, Contract No. 23184]

Authors

Publications

Improvement of Au-poly(N-isopropylacrylamide) hydrogel nanocomposites: Singlelayer vs. bi-layered systems

Nikolić, Nikolina; Spasojević, Jelena; Stamenović, Una; Vodnik, Vesna; Vukoje, Ivana; Kačarević-Popović, Zorica; Radosavljević, Aleksandra

(Belgrade : Institute of Technical Sciences of SASA, 2023)

TY  - CONF
AU  - Nikolić, Nikolina
AU  - Spasojević, Jelena
AU  - Stamenović, Una
AU  - Vodnik, Vesna
AU  - Vukoje, Ivana
AU  - Kačarević-Popović, Zorica
AU  - Radosavljević, Aleksandra
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/12325
AB  - In recent years, the need for innovative materials has produced remarkable progress in the field of smart materials, with a particular focus on nanocomposite systems containing crosslinked polymer matrices (hydrogels) and metal nanoparticles. Hydrogels have become a crucial class of biomaterials due to their stable 3D porous structures, high fluid absorption capacity, similarity to biological tissues, and biocompatibility. Of particular interest are hydrogels with the ability to respond to various external stimuli (temperature, pH, light etc.), resulting in alterations of their physical and chemical characteristics. Our research focuses on the nanocomposites based on thermosensitive poly(N-isopropylacrylamide) (PNiPAAm) hydrogels and gold nanoparticles (AuNPs), with a unique emphasis on exploring the specific properties of single-layer and bi-layered systems. The insights gained from this comparative study open new possibilities for applications in drug delivery, sensors, and soft robotics. Single-layer systems consisting of active PNiPAAm hydrogel and AuNPs, were created through a combination of radiolytic and chemical procedures. Bi-layered systems feature an active Au-PNiPAAm layer, with the addition of a passive poly(vinyl alcohol) (PVA) hydrogel layer, crosslinked by the combination of freeze-thaw and radiolytic techniques. In both cases, the incorporation of spherical AuNPs within an active layer was confirmed by the presence of a characteristic surface plasmon resonance (SPR), while scanning electron microscopy (SEM) indicated the system's highly porous structure. The physicochemical properties of both single- and bi-layered systems involved the examination of their swelling and deswelling properties, as well as the volume phase transition temperature (VPTT). The incorporation of AuNPs in the PNiPAAm layer led to an increase in both swelling capacity and VPTT. Compression measurements showed that the presence of a passive layer and AuNPs significantly improved mechanical properties of nanocomposites.
PB  - Belgrade : Institute of Technical Sciences of SASA
C3  - 21st Young Researchers' Conference Materials Sciences and Engineering : program and the book of abstracts
T1  - Improvement of Au-poly(N-isopropylacrylamide) hydrogel nanocomposites: Singlelayer vs. bi-layered systems
SP  - 54
EP  - 54
UR  - https://hdl.handle.net/21.15107/rcub_vinar_12325
ER  - 
@conference{
author = "Nikolić, Nikolina and Spasojević, Jelena and Stamenović, Una and Vodnik, Vesna and Vukoje, Ivana and Kačarević-Popović, Zorica and Radosavljević, Aleksandra",
year = "2023",
abstract = "In recent years, the need for innovative materials has produced remarkable progress in the field of smart materials, with a particular focus on nanocomposite systems containing crosslinked polymer matrices (hydrogels) and metal nanoparticles. Hydrogels have become a crucial class of biomaterials due to their stable 3D porous structures, high fluid absorption capacity, similarity to biological tissues, and biocompatibility. Of particular interest are hydrogels with the ability to respond to various external stimuli (temperature, pH, light etc.), resulting in alterations of their physical and chemical characteristics. Our research focuses on the nanocomposites based on thermosensitive poly(N-isopropylacrylamide) (PNiPAAm) hydrogels and gold nanoparticles (AuNPs), with a unique emphasis on exploring the specific properties of single-layer and bi-layered systems. The insights gained from this comparative study open new possibilities for applications in drug delivery, sensors, and soft robotics. Single-layer systems consisting of active PNiPAAm hydrogel and AuNPs, were created through a combination of radiolytic and chemical procedures. Bi-layered systems feature an active Au-PNiPAAm layer, with the addition of a passive poly(vinyl alcohol) (PVA) hydrogel layer, crosslinked by the combination of freeze-thaw and radiolytic techniques. In both cases, the incorporation of spherical AuNPs within an active layer was confirmed by the presence of a characteristic surface plasmon resonance (SPR), while scanning electron microscopy (SEM) indicated the system's highly porous structure. The physicochemical properties of both single- and bi-layered systems involved the examination of their swelling and deswelling properties, as well as the volume phase transition temperature (VPTT). The incorporation of AuNPs in the PNiPAAm layer led to an increase in both swelling capacity and VPTT. Compression measurements showed that the presence of a passive layer and AuNPs significantly improved mechanical properties of nanocomposites.",
publisher = "Belgrade : Institute of Technical Sciences of SASA",
journal = "21st Young Researchers' Conference Materials Sciences and Engineering : program and the book of abstracts",
title = "Improvement of Au-poly(N-isopropylacrylamide) hydrogel nanocomposites: Singlelayer vs. bi-layered systems",
pages = "54-54",
url = "https://hdl.handle.net/21.15107/rcub_vinar_12325"
}
Nikolić, N., Spasojević, J., Stamenović, U., Vodnik, V., Vukoje, I., Kačarević-Popović, Z.,& Radosavljević, A.. (2023). Improvement of Au-poly(N-isopropylacrylamide) hydrogel nanocomposites: Singlelayer vs. bi-layered systems. in 21st Young Researchers' Conference Materials Sciences and Engineering : program and the book of abstracts
Belgrade : Institute of Technical Sciences of SASA., 54-54.
https://hdl.handle.net/21.15107/rcub_vinar_12325
Nikolić N, Spasojević J, Stamenović U, Vodnik V, Vukoje I, Kačarević-Popović Z, Radosavljević A. Improvement of Au-poly(N-isopropylacrylamide) hydrogel nanocomposites: Singlelayer vs. bi-layered systems. in 21st Young Researchers' Conference Materials Sciences and Engineering : program and the book of abstracts. 2023;:54-54.
https://hdl.handle.net/21.15107/rcub_vinar_12325 .
Nikolić, Nikolina, Spasojević, Jelena, Stamenović, Una, Vodnik, Vesna, Vukoje, Ivana, Kačarević-Popović, Zorica, Radosavljević, Aleksandra, "Improvement of Au-poly(N-isopropylacrylamide) hydrogel nanocomposites: Singlelayer vs. bi-layered systems" in 21st Young Researchers' Conference Materials Sciences and Engineering : program and the book of abstracts (2023):54-54,
https://hdl.handle.net/21.15107/rcub_vinar_12325 .