Stanković, Vesna

Link to this page

Authority KeyName Variants
wited-dasfkj-342ksd-5435
  • Stanković, Vesna (2)
Projects

Author's Bibliography

Micromolar Levofloxacin Sensor by Incorporating Highly Crystalline Co3O4 into a Carbon Paste Electrode Structure

Mutić, Tijana; Stanković, Dalibor M.; Manojlović, Dragan; Petrić, Đorđe; Pastor, Ferenc; Avdin, Vyacheslav V.; Ognjanović, Miloš; Stanković, Vesna

(2024)

TY  - JOUR
AU  - Mutić, Tijana
AU  - Stanković, Dalibor M.
AU  - Manojlović, Dragan
AU  - Petrić, Đorđe
AU  - Pastor, Ferenc
AU  - Avdin, Vyacheslav V.
AU  - Ognjanović, Miloš
AU  - Stanković, Vesna
PY  - 2024
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/13122
AB  - In this work, we successfully prepared a modified cobalt oxide (Co3O4) carbon paste electrode to detect Levofloxacin (LEV). By synthesizing Co3O4 nanoparticles through the chemical coprecipitation method, the electrochemical properties of the electrode and LEV were thoroughly investigated using CV, SWV, and EIS, while material properties were scrutinized using ICP-OES, TEM, SEM, and XRD. The results showed that the prepared electrode displayed a better electrocatalytic response than the bare carbon paste electrode. After optimizing SWV, the electrode exhibited a wide linear working range from 1 to 85 μM at pH 5 of BRBS as the supporting electrolyte. The selectivity of the proposed method was satisfactory, with good repeatability and reproducibility, strongly suggesting a potential application for determining LEV in real samples, particularly in pharmaceutical formulations. The practicality of the approach was demonstrated through good recoveries, and the morphology of the materials was found to be closely related to other parameters, indicating that the developed method can provide a cost-effective, rapid, selective, and sensitive means for LEV monitoring. Overall, this project has made significant progress towards developing a reliable method for detecting LEV and has opened up new opportunities for future research in this field.
T2  - Electrochem
T1  - Micromolar Levofloxacin Sensor by Incorporating Highly Crystalline Co3O4 into a Carbon Paste Electrode Structure
VL  - 5
IS  - 1
SP  - 45
EP  - 56
DO  - 10.3390/electrochem5010003
ER  - 
@article{
author = "Mutić, Tijana and Stanković, Dalibor M. and Manojlović, Dragan and Petrić, Đorđe and Pastor, Ferenc and Avdin, Vyacheslav V. and Ognjanović, Miloš and Stanković, Vesna",
year = "2024",
abstract = "In this work, we successfully prepared a modified cobalt oxide (Co3O4) carbon paste electrode to detect Levofloxacin (LEV). By synthesizing Co3O4 nanoparticles through the chemical coprecipitation method, the electrochemical properties of the electrode and LEV were thoroughly investigated using CV, SWV, and EIS, while material properties were scrutinized using ICP-OES, TEM, SEM, and XRD. The results showed that the prepared electrode displayed a better electrocatalytic response than the bare carbon paste electrode. After optimizing SWV, the electrode exhibited a wide linear working range from 1 to 85 μM at pH 5 of BRBS as the supporting electrolyte. The selectivity of the proposed method was satisfactory, with good repeatability and reproducibility, strongly suggesting a potential application for determining LEV in real samples, particularly in pharmaceutical formulations. The practicality of the approach was demonstrated through good recoveries, and the morphology of the materials was found to be closely related to other parameters, indicating that the developed method can provide a cost-effective, rapid, selective, and sensitive means for LEV monitoring. Overall, this project has made significant progress towards developing a reliable method for detecting LEV and has opened up new opportunities for future research in this field.",
journal = "Electrochem",
title = "Micromolar Levofloxacin Sensor by Incorporating Highly Crystalline Co3O4 into a Carbon Paste Electrode Structure",
volume = "5",
number = "1",
pages = "45-56",
doi = "10.3390/electrochem5010003"
}
Mutić, T., Stanković, D. M., Manojlović, D., Petrić, Đ., Pastor, F., Avdin, V. V., Ognjanović, M.,& Stanković, V.. (2024). Micromolar Levofloxacin Sensor by Incorporating Highly Crystalline Co3O4 into a Carbon Paste Electrode Structure. in Electrochem, 5(1), 45-56.
https://doi.org/10.3390/electrochem5010003
Mutić T, Stanković DM, Manojlović D, Petrić Đ, Pastor F, Avdin VV, Ognjanović M, Stanković V. Micromolar Levofloxacin Sensor by Incorporating Highly Crystalline Co3O4 into a Carbon Paste Electrode Structure. in Electrochem. 2024;5(1):45-56.
doi:10.3390/electrochem5010003 .
Mutić, Tijana, Stanković, Dalibor M., Manojlović, Dragan, Petrić, Đorđe, Pastor, Ferenc, Avdin, Vyacheslav V., Ognjanović, Miloš, Stanković, Vesna, "Micromolar Levofloxacin Sensor by Incorporating Highly Crystalline Co3O4 into a Carbon Paste Electrode Structure" in Electrochem, 5, no. 1 (2024):45-56,
https://doi.org/10.3390/electrochem5010003 . .
1
1

Improving gallic acid detection in plant samples: Fabrication and optimization of a sensitive and selective NiO-supported carbon paste electrode

Mutić, Tijana; Ognjanović, Miloš; Ivković, Đurđa; Nikolić, Vladimir; Stanković, Vesna; Ristivojević, Petar; Stanković, Dalibor

(2024)

TY  - JOUR
AU  - Mutić, Tijana
AU  - Ognjanović, Miloš
AU  - Ivković, Đurđa
AU  - Nikolić, Vladimir
AU  - Stanković, Vesna
AU  - Ristivojević, Petar
AU  - Stanković, Dalibor
PY  - 2024
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/13031
AB  - In this study, we successfully prepared a modified nickel oxide (NiO) carbon paste electrode to detect gallic acid (GA). NiO nanoparticles were synthesized by the simple, organic solvent-free chemical coprecipitation method, and the electrochemical properties of the electrode and GA were thoroughly investigated using CV, SWV, and EIS, while morphological properties were examined using ICP-OES, TEM, SEM, and XRD. Excellent catalytic characteristics are displayed by the developed material which facilitates the interaction of the target with the electrode surface. The obtained electrochemical information showed that the incorporation of NiO nanoparticles to the carbon paste electrode effectively facilitates electron transfer processes and enriches the catalytic response of the carbon paste electrode. The fabricated NiO/CPE sensor showed a satisfactory linear relationship between peak current and GA concentration in the broad range of 0.2–100 μM and 100–200 μM with a low detection limit of 0.04 μM and limit of quantification of 0.12 μM at pH 3 of BRBS as supporting electrolyte. The selectivity of the proposed method was satisfactory, with acceptable stability, considerable repeatability, and accurate reproducibility. Moreover, the good practicability performance could be effectuated at the NiO/CPE sensor for the quantitative analysis of GA in bourtree, walnut, primrose, and chamomile tea samples. The results were compared with the standard DPPH test and statistical processing of the results was performed, which confirmed the excellent agreement between the two methods. The developed method can provide a cost-effective, rapid, selective, and sensitive means for GA monitoring. When compared to other works, the developed technique has a wider linear range and lower LOD and LOQ, which makes this work a very important reference for the highly sensitive analysis of GA in the field of food safety.
T2  - Journal of Electroanalytical Chemistry
T1  - Improving gallic acid detection in plant samples: Fabrication and optimization of a sensitive and selective NiO-supported carbon paste electrode
VL  - 960
SP  - 118213
DO  - 10.1016/j.jelechem.2024.118213
ER  - 
@article{
author = "Mutić, Tijana and Ognjanović, Miloš and Ivković, Đurđa and Nikolić, Vladimir and Stanković, Vesna and Ristivojević, Petar and Stanković, Dalibor",
year = "2024",
abstract = "In this study, we successfully prepared a modified nickel oxide (NiO) carbon paste electrode to detect gallic acid (GA). NiO nanoparticles were synthesized by the simple, organic solvent-free chemical coprecipitation method, and the electrochemical properties of the electrode and GA were thoroughly investigated using CV, SWV, and EIS, while morphological properties were examined using ICP-OES, TEM, SEM, and XRD. Excellent catalytic characteristics are displayed by the developed material which facilitates the interaction of the target with the electrode surface. The obtained electrochemical information showed that the incorporation of NiO nanoparticles to the carbon paste electrode effectively facilitates electron transfer processes and enriches the catalytic response of the carbon paste electrode. The fabricated NiO/CPE sensor showed a satisfactory linear relationship between peak current and GA concentration in the broad range of 0.2–100 μM and 100–200 μM with a low detection limit of 0.04 μM and limit of quantification of 0.12 μM at pH 3 of BRBS as supporting electrolyte. The selectivity of the proposed method was satisfactory, with acceptable stability, considerable repeatability, and accurate reproducibility. Moreover, the good practicability performance could be effectuated at the NiO/CPE sensor for the quantitative analysis of GA in bourtree, walnut, primrose, and chamomile tea samples. The results were compared with the standard DPPH test and statistical processing of the results was performed, which confirmed the excellent agreement between the two methods. The developed method can provide a cost-effective, rapid, selective, and sensitive means for GA monitoring. When compared to other works, the developed technique has a wider linear range and lower LOD and LOQ, which makes this work a very important reference for the highly sensitive analysis of GA in the field of food safety.",
journal = "Journal of Electroanalytical Chemistry",
title = "Improving gallic acid detection in plant samples: Fabrication and optimization of a sensitive and selective NiO-supported carbon paste electrode",
volume = "960",
pages = "118213",
doi = "10.1016/j.jelechem.2024.118213"
}
Mutić, T., Ognjanović, M., Ivković, Đ., Nikolić, V., Stanković, V., Ristivojević, P.,& Stanković, D.. (2024). Improving gallic acid detection in plant samples: Fabrication and optimization of a sensitive and selective NiO-supported carbon paste electrode. in Journal of Electroanalytical Chemistry, 960, 118213.
https://doi.org/10.1016/j.jelechem.2024.118213
Mutić T, Ognjanović M, Ivković Đ, Nikolić V, Stanković V, Ristivojević P, Stanković D. Improving gallic acid detection in plant samples: Fabrication and optimization of a sensitive and selective NiO-supported carbon paste electrode. in Journal of Electroanalytical Chemistry. 2024;960:118213.
doi:10.1016/j.jelechem.2024.118213 .
Mutić, Tijana, Ognjanović, Miloš, Ivković, Đurđa, Nikolić, Vladimir, Stanković, Vesna, Ristivojević, Petar, Stanković, Dalibor, "Improving gallic acid detection in plant samples: Fabrication and optimization of a sensitive and selective NiO-supported carbon paste electrode" in Journal of Electroanalytical Chemistry, 960 (2024):118213,
https://doi.org/10.1016/j.jelechem.2024.118213 . .