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a b s t r a c t 

We introduce a quantum superconducting metamaterial design constituted of flux qubits that operate 

as artificial atoms and analyze the dynamics of an injected electromagnetic pulse in the system. Qubit- 

photon interaction affects dramatically the nonlinear photon pulse propagation. We find analytically that 

the well known atomic phenomenon of self induced transparency may occur in this metamaterial as well 

and may lead to significant control over the optical pulse propagating properties. Specifically, the pulse 

may be slowed down substantially or even be stopped. These pulse properties depend crucially on the 

inhomogeneous broadening of the levels of the artificial atoms. 
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. Introduction-motivation 

The discovery of quantum coherence in mesoscopic and macro-

copic systems [1–6] made possible practical applications of quan-

um mechanical phenomena such as: quantum entanglement, su-

erposition and tunneling in novel quantum technologies including

uantum information processing, communication and teleportation

7–16] . 

A convenient ground for the design of new ‘devices’ being

ble to exploit practically quantum mechanical phenomena are

ngineered materials composed of the artificial “atoms” – quan-

um bits (qubits). Superconducting qubits, superconducting circuits

omprising Josephson junctions (JJ), realize artificial atoms with

ngineered ‘atomic’ levels which may be easily tuned by means

f external magnetic flux. Owing to that, relatively long coherence

imes and extremely low dissipation, SCQBs satisfy most of the re-

uirements for being building blocks of viable quantum devices,

uantum computers, in particular. 

Processing of information stored in qubits demands qubit–qubit

utual communication. It may be realized by direct coupling via

he “exchange” interaction of neighboring qubits. Communication

etween the distant qubits can be achieved exploiting their cou-

ling with electromagnetic radiation. The use of electromagnetic

adiation for information processing has two distnict sides. On one
∗ Corresponding author at: National University of Science and Technology MISiS, 

eninsky prosp. 4, Moscow 119049, Russia. 
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ide, the information transfer requires the fast inter-qubit commu-

ication. On the other side, the storage as well as manuipulation of

uantum information requires the significant slowing down of the

elocity of the electronic radiation through which qubits commu-

icate. This can be achieved by the coupling of information stored

n photon field to excitations in atomic gases [17–27] . In this way

oherent information storage in a cold gas ( 9 μK ) of sodium atoms

19,28] was accomplished by means of the electromagnetically in-

uced transparency (EIT). In [19] the storage without distortion of

he shape of the probe pulse has been demonstrated in excess of

00 μs for weak classical probe pulses, while the nonclassical cor-

elations have been observed for up to 3 μs [28] . This shows a

ertain promise for the development of photonic quantum infor-

ation storage devices. However, the storage time scales and re-

rieval efficiency are still low for these signals. 

These difficulties could be overcome through using quantum

etamaterials (QMM), i.e artificial optical media composed of a

arge number of periodically arranged superconducting qubits em-

edded in superconducting transmission line resonator [29–34] .

xploiting ‘meta- atoms’ instead of the natural ones, made possible

o construct devices operable in regimes which are not accessible

ith real atoms. 

Quantum coherence in ensembles of superconducting qubits

ay be affected severely by the homogeneous and inhomogeneous

roadening of the ‘atomic’ levels. This is due to coupling with the

nvironment and the fluctuations induced by the non-identity of

he JJ units; the latter have non–uniform sizes stemming from

abrication conditions [35–38] . However, relaxation effects do not
BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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Fig. 1. (a) A three qubit schematic shown with relative phases ±η on supercon- 

ducting islands. (b) Josephson energy of the system as a function of the rela- 

tive phase η = 

˜ φ1 − ˜ φ2 . Phase on JJs are bounded by the condition ˜ φi − ˜ φ2 + 

˜ φ3 = 

2 π �ext 

�0 
, so that three JJ–junction may be described by relative phase η and ηp = 

˜ φ1 + 

˜ φ2 . Later one is usually chosen as zero [37] and single flux model attains usual 

double-well form. Solid line: unbiased system with � = 0 . 5�0 ; dashed line: system 

with finite detuning δφ = � + 0 . 5�0 . 
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necessarily lead to a decoherence. Quite on the contrary, the emer-

gence of several quantum coherent phenomena such as photon

echo [39–43] and self induced transparency (SIT) [39,44–46] , re-

quires inhomogeneous level broadening . This imply that inhomoge-

neous broadening may play positive role in the design of operable

quantum devices; for example, spin systems with controllable in-

homogenities were suggested as classical spin echo [47–49] and

photon echo memories [42,43,47–50] . Required controllable inho-

mogenities may be provided by varying external magnetic field. 

In the present work we examine further the possibility of ex-

ploiting inhomogeneous broadening in achieving of quantum co-

herence in engineered superconducting quantum metamaterials.

We focus on the emergence of the SIT and soliton like propaga-

tion of EM–pulses in QMM. This could be exploited for manip-

ulating EM radiation and development of new techniques of the

“light” slowing down with possible application in quantum infor-

mation processing. For that purpose we propose a “device” – QMM

composed of non–interacting flux qubits embedded in massive su-

perconducting resonator. Due to the lack of the offset charge fluc-

tuations, easy control of their energy parameters and the effects

of inhomogeneous broadening by means of the external magnetic

field, flux qubit based QMMs are more advantageous for practical

applications than those based on charge superconducting qubits. 

We recall that SIT is loseless propagation of a sufficiently

powerful short light pulse through the media consisting of in-

homogeneously broadened two–level systems. The crucial the-

oretical result of the entire concept of SIT, i.e. the area

theorem (AT), is strictly valid only for the inhomogeneously

broadened media. All features of SIT are determined in terms of

single parameter, i.e the pulse area ( θ (x ) ∼ ∫ ∞ 

−∞ 

dt ′ E(x, t ′ ) , E(x, t ′ )
− is electric field amplitude . ) which measures the strength of the

light–matter interaction. 1 Depending on the value of the area

SIT exhibits a number of characteristic features: a) pulses with

values of area equal to integer multiples of π (i.e. with θn =
nπ, n = 0 , 1 , 2 . . . ) maintain the same area during the propagation,

b) pulses with other values (non-integer ones) must reshape in

propagation until their area reaches some θn . Pulses with the area

corresponding to even (odd) multiples of π are stable (unstable).

The changes of the area with the distance of the pulses whose in-

put area is below π is always negative and the media will absorb

it. On the contrary, for the pulse whose area is slightly above π ,

this change is always positive so that θ ( x ) increases until it reaches

2 π . Pulses having area 2 n π remain unchanged in shape and am-

plitude and propagates as solitons, while those with area equal to

n = 2 , 3 . . . split into two, three ... solitons. 

Crucial condition for observation of SIT is the coherence be-

tween the electric field and two–level systems. It is provided by

using so called ultrashort pulses whose duration time is very short

with respect to all damping times due to coupling with environ-

ment, i.e due to homogeneous broadening . In parallel, pulse dura-

tion must be comparable or larger than inhomogeneous broaden-

ing relaxation time. Homogeneous broadening is characterized by a

relaxation rate which reads: 1 
T 2 

= 

1 
2 T 1 

+ 

1 
T ′ 

2 

with T 1 and T ′ 2 being so

called longitudinal and transverse relaxation time characterizing,

respectively, the decay of “atoms” from excited to ground state and

pure dephasing. The inhomogenenous comes from the random dis-

tribution of ‘atomic’ transition frequencies. Also, it may arise due

to interaction of the qubit degree of freedom with the quasiparti-

cles excitations in the superconductor from which qubit is made

of [36] . Quantitative measure of this effect is the dephasing relax-

ation time T ∗. Conditions for the observation of SIT are optimal in
1 Here we used definition coming from an ‘ordinary’ SIT appearing in atomic 

gases (vapor), however, as demonstrated below, the pulse area does not strictly re- 

fer to the electric field. 

s  

s  

t  

e  

fi

he sharp line limit 

p � T 1 ; T ′ 2 T 
∗ (1)

r in broad line limit 

 

∗ � τp � T 1 ; T ′ 2 (2)

 

The structure of this paper is the following: In the next section

e describe the proposed design of the metamaterial-based device

e study and the associated mathematical model. In Section 3 . we

iscuss the Hamiltonian of the model while in 4-th section we de-

ive and solve in the continuous limit the equations of motion. The

ole of SIT is uncovered in Section 5 . the pulse delay engineering

n Section 6 . while in Section Appendix B . we conclude. 

. Flux qubit based quantum metamaterial: proposed design 

nd mathematical model 

The persistent current qubit [51–54] comprises a superconduct-

ng loop interrupted by three Josephson junctions (marked by ‘ × ’

n Fig. (1 . a)). It is taken that the left and right Josephson junctions

re identical with capacitance C and charging E c = 

e 2 

2 C and Joseph-

on energy E J = 

I c �0 
2 π , with I c and �0 being critical current of the

ide JJs and superconducting flux quantum, respectively. The cen-

ral junction is characterized by a capacitance αC and Josephson

nergy αE J with α < 1. The gate capacitances (not shown in the

gure) are equal γ C . 
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Fig. 2. Possible realizations of the QMM “device”. Large number of flux qubits in- 

ductively coupled to superconducting transmission line. Left pane – physical scheme , 

right pane – representation with lumped-elements circuit The length of a single sec- 

tion is d , its selfinductance L , and capacitance C . The phase velocity in the unper- 

turbed line is thus s = d�, where �2 = 1 /L C. 
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It was shown in Ref. [51,52] that the phase space coordinate

hich describes transitions between the right and left states is

he relative phase θ of the two superconducting islands Fig. (1 ).

osephson energies are chosen so that the Josephson part of the

amiltonian alone defines a bistable system which, at the value

f external magnetic flux � = 0 . 5�0 can be either in the right-

and, or in the left-hand current state. That is, the potential en-

rgy of the system as a function of θ has two minima, η = ±η0 ,

s shown in Fig. 1 (b). These minima are symmetric at � = 0 . 5�0 

nd asymmetric at � � = 0.5 �0 . By choosing system parameters ap-

ropriately, the barrier in the phase space separating the right and

eft current states can be made low enough, so that tunneling be-

ween two classical states will take place. The tunneling ampli-

ude for the barrier U ( η) is � ∼
√ 

E J 
E C 

e 
−α

E J 
E C ; the detuning of ex-

ernal field from the value 0.5 �0 produces a bias on the right and

eft states, making one of them lower in energy than the other:

 = 2 I p (� − 0 . 5�0 ) where I p is the circulating current. 

The resulting qubit Hamiltonian is 

 = −�τx − hτz . (3) 

ere τ x,y,z are Pauli spin matrices in the persistent current basis. 

The Hamiltonian (3) may be easily diagonalized in the energy

igenstate basis by means of the unitary transformation: 

τx = σx cos ϑ + σz sin ϑ, 

τz = σz cos ϑ − σx sin ϑ, (4) 

an ϑ = 

�

h 

 = εσz , ε = 

√ 

h 

2 + �2 . (5)

ere −ε and ε denote the energy of the ground and the first ex-

ited states, respectively. 

In the notation of Eq. (3) the clockwise ( | + 〉 ) and anticlock-

ise ( |−〉 ) current states correspond to qubit ‘spin’ up and down:

z |±〉 = ±|±〉 , while, in the energy eigenbasis (| e 〉 –excited state

 g 〉 –ground state) spin up and down corresponds to qubit in ex-

ited or in ground state: σ z | e 〉 = | e 〉 , and σ z | g〉 = −| g〉 . 
In the operating regime of flux qubit E J > E C and near the de-

eneracy point �∼�0 /2 which provides the preserving of the

uantum coherence. 

.1. Qubit – microwave coupling 

In order to study the ways of the control over the propaga-

ion of electromagnetic radiation we propose that the new device

onsists of a chain of large number ( N 	 1) of aligned equidistant

ubits 2 , i.e. forming a the one-dimensional qubit “crystal”. In order

o achieve the control over the propagation of photons, it is nec-

ssary to couple the QMM with photons. The simplest way to re-

lize it is to embed it in a superconducting cavity [29–34] . A prin-

iple scheme of the possible realization of such device with QMM

ormed of a collection of flux qubits is given below on Fig. 2 

In the proposed setup shown in Fig. 2 , we associate qubit to a

odes of our quasi one–dimensional “crystal”. To each is assigned

 flux variable ϕn , such that the current between the neighboring

odes ( n and n + 1 ) is given by ( (ϕ n +1 − ϕ n ) /L ). We assume that

ransmission line is homogeneous so that the segments of trans-

ission line between all nodes have identical self-inductance L

nd capacitance C. The transmission line Hamiltonian has the form

30] : 

 T L = 

1 

2 

∑ 

n 

[ 
C ˙ ϕ 

2 
n + 

1 

L 
(ϕ n +1 − ϕ n ) 

2 
] 
. (6) 
2 any type, in principle. 

p  

B  

P  
ssuming that each qubit interacts with the part of the resonator,

.e. the nearest neighbouring segments of length a , we may take

hat L ≡ L r . Electromagnetic radiation travels through the unper-

urbed line with phase velocity s = d� ( � = 1 / 
√ 

L C ). 
The coupling to the qubits takes place due to the fluxes ϕ n =

 ̂

 I p (n ) sent by the nth qubit through the corresponding section of

he line, M being their mutual inductance, and 

ˆ I p ∼ τ z 
n the persis-

ent current operator in the qubit loop. That is, the qubit-resonator

ode interaction Hamiltonian takes the form: 

 i = 

∑ 

n 

g n τ
z 
n (ϕ n +1 − ϕ n ) . (7)

ith coupling constant g n = I p (n ) 
√ 

�/ h̄ L . The circulating current

 p depends on the amount of external magnetic flux in the loop in

nits of the flux quantum [52] . In the eigen-energy basis (5) our

odel Hamiltonian takes the form: 

 = 

∑ 

n 

h̄ 

ω n 

2 

σ z 
n + 

∑ 

n 

g n 

εn 
(�n σ

x 
n − h n σ

z 
n )(ϕ n +1 − ϕ n ) + H T L . (8)

here the n -indexed parameters ( ω n , �n , h n ) are due to the

nhomogeneities introduced by the non-uniform sizes of the JJs

hich are very sensitive to a fabrication conditions. For that rea-

on, transition frequencies between ground and excited state ( ω n =
2 
√ 

�2 
n + h 2 n 

h̄ 
) are not the same for all ‘atoms’, but randomly distributed

bout some mean value. Thus, in practice, any ensemble of super-

onducting qubits (SCQBs) my be characterized by a normalized

ine–shape function – ˜ G (ω n ) . In the large ensembles of qubits this

istribution is continuous and lineshape function is determined in

uch way that ˜ G (ω n ) dω n is the fraction of ‘atoms’ with resonance

enter frequency within d ω n of the frequency ω n , while the re-

uired normalization is 
∫ ∞ 

0 
˜ G (ω n ) dω n = 1 [39] . 

. Coupled qubit-photon equations of motion 

Propagation of EM radiation in the proposed “device” may be

escribed within the semiclassical approximation: i.e. employing

he Hamilton equations for description of the current (voltage)

ropagation in transmission line, and the Schrödinger equation

n order to describe the dynamics of the qubit subsystem. Taking

hat qubit in each node is in the superposition of ground and

xcited states we define vector of state of the whole QMM as:

(t) = 

∑ 

n A n (t) | e 〉 n + B n (t) | g〉 n . Equations of motion for com-

lex functions A n and B n may be derived from the Schrödinger

quation i h̄ ∂ 
∂t 

| �(t) 〉 = H| �(t) 〉 . Since each qubit has only two

tates, these functions, on each node, satisfy the normalization

ondition | A n | 2 + | B n | 2 = 1 . Further analysis may be notably sim-

lified introducing the set of new variables, now known as the

loch vector components, defined as the expectation values of

auli matrices in the state �( x, t ) : S x,y,z;n = 〈 �| σx,y,z | �〉 or
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explicitly – S x = A 

∗B + c.c, S y = i (A 

∗B − c.c) , S z = | A | 2 − | B | 2 .
In terms of Bloch variables normalization condition reads:∑ 

i = x,y,z (S i n ) 
2 = 1 . 

Bearing in mind that flux qubit operates in the vicinity of

the symmetry point ( h n ��n ) we may neglect the second term

in the field-qubit interaction (i.e. the one ∼ σ z 
n ) so that the set

of evolution (“Maxwell-Bloch”) equations for the proposed model

(8) reads: 

˙ S x n = −ω n S 
y 
n , 

˙ S y n = ω n S 
x 
n −

g n 

h̄ 

(ϕ n +1 − ϕ n ) S 
z 
n , 

˙ S z n = 

g n 

h̄ 

(ϕ n +1 − ϕ n ) S 
y 
n , 

ϕ̈ n − �2 (ϕ n +1 + ϕ n −1 − 2 ϕ n ) = 

g n 

2 C 〈 (S x n +1 − S x n ) 〉 . (9)

The effects of the homogeneous broadening and nonresonant losses

in the resonator were ignored by restricting ourselves to the ultra-

short pulses with duration far below all relevant relaxation times. 

The angular brackets on the right –hand side in the last equa-

tion above stands for the accounting for all individual contribu-

tions of IH broadened “atoms” each having different transition fre-

quency ϖ. The ‘atomic’ variables ( S 
x,y,z 
n (t) ) are functions of ω n ,

therefore, their collective back–action on propagating pulse is ap-

propriately described in terms of their average values as follows:

〈 S x,y,z (ω n ) 〉 = 

∫ ∞ 

0 dω n ̃  G (ω n ) S 
x,y,z 
n (ω n ) . 

In practical realization of quantum devices, QMM size ( l ∼
1 cm ) highly exceeds that of the individual qubits ( ∼ 1 μm ) which

may be considered as point like objects. Moreover, provided that

the wavelength λ of resonator modes is small with respect to scale

of transmission line ( l ), but highly exceeds the inter-qubit sepa-

ration ( d �λ< l ), further analytic examination may be performed

within the continuum limit. That is, all dynamical variables became

continuous functions of time ( t ) and spatial coordinate along the

qubit chain x : nd → x . Thus (9) becomes 

˙ S x (� ) = −� S y (� ) , ˙ S y (� ) = � S x (� ) − gL 

h̄ 

S z (� ) I, 

˙ S z (� ) = 

gL 

h̄ 

S y (� ) I , Ï = s 2 I ′′ + 

gs 2 

2 

〈 S ′′ x 〉 , (10)

Here we have introduced a new variable – the current in transmis-

sion line corresponding to a spatial variance of the magnetic flux

I(x, t) = (d/L ) ϕ 

′ [29,31] . This simple step provides a more trans-

parent physical description of the system dynamics, facilitates cal-

culations and enables us to make bridge with the previous exten-

sive studies of the SIT in atomic gases [44] and SIT of acoustic

waves in magnetic materials with paramagnetic impurities [55] . 3 

The new parameter ϖ has the same meaning as ω n in (13) ,

however, the use of discrete index n in continuum equations could

be misleading. Thus, by ϖ here we denote the qubit transition fre-

quency being different for each qubit , accordingly, inhomogeneous

broadening is described by ˜ G (� ) . 

For QMM built of a large number of flux qubits, it is conve-

nient to allow for continuous distribution of ϖ–s about mean one

( ω 0 ), which is usually taken to be equal to the carrier pulse fre-

quency ω 0 = ω. In this case, inhomogeneous broadening is de-

scribed in terms of so called detuning function G(D ) obtained

by shifting the ϖ in 

˜ G towards frequency origin. Thus, G(D ) dD,

is defined to be the fraction of ‘atoms’, within the detuning
3 For clarity we briefly sketch the derivation of the last equation above. First 

we write the last equation in 9 in continuum approximation ϕ̈ (x, t) = s 2 ϕ ′′ (x, t) + 

ga 
2 C S 

′ 
x (� ) . Now we eliminate ϕ exploiting I n = (ϕ n +1 − ϕ n ) /L → I(x, t) = (d/L ) ϕ ′ 

[29,31] , finally taking the spatial derivative of both sides of the wave equation 

and assuming that the order of the spatial and time derivatives are independent 

( ∂ ̈σx 

∂x 
= 

∂ 2 σ ′ 
x 

∂t 2 
≡ Ï ), 

∣
 

T

 

r

nterval dD . Its resonance center frequency ϖ is detuned from

he applied field frequency by D = � − ω. Normalization condition

ow reads: 
∫ ∞ 

−ω G(D ) dD = 

∫ ∞ 

−∞ 

G(D ) dD ≡ 1 . Here the first identity

olds under the assumption that G at the true lower limit of inte-

ration D = −ω is so small that the extending this limit towards to

∞ makes no difference. 

In practical calculation of the particular averages one should

are in mind that the actual lower limit of integration is −ω, oth-

rwise, averaging the variables being odd functions of D will give

esult zero. 

All dynamical variables in (10) are functions of spatial coordi-

ate and time, but, for the simplicity of presentation, we have used

ompact notation omitting the arguments ( x, t ). On the other side,

he dependence of the Bloch vector components on ϖ is empha-

ized as a reminder that due random distribution of the ‘atomic’

requencies ϖ each qubit is associated with particular ϖ. For that

eason, the above system consists of 3 N + 1 evolution equations:

hree for each of N qubits plus one for the cavity mode. Cavity is

escribed by a single equation since EM pulse “feels” the averaged

nfluence of the all qubits so that flux variables ϕ( x, t ) do not de-

end explicitly on ϖ. 

Its solution is extremely difficult task, which, in general may

e treated only numerically. Nevertheless, as indicated in numer-

cal simulations [57] and confirmed experimentally [58] , SIT in

tomic gases and condensed media exhibits essentially the same

eatures in sharp and broad line media. Inhomogeneous broaden-

ng influences only the individual velocity of each pulse leaving

naffected all other characteristic properties including soliton like

ropagation of 2 π pulse, its delay, and break up n 2 π pulses into

 2 π pulses. Thus, in practical analytic treatment, one may ignore

he inhomogeneous broadening and solve the above system as for

he uniform medium consisting of identical atoms. Once when

harp line solutions are known, final solutions for the broadened

edia, are then obtained by appropriate averaging over the ϖ, or,

quivalently, over D . 

.1. Slowly varying envelope and phase approximation 

The system of Eq. (10) is formally identical to that appearing in

 theoretical treatment of acoustic self-induced transparency (ASIT)

55,56] , with I playing the role of strain. This indicates that, de-

pite the quite different physical content, mathematical treatment

f the present problem may be carried on by means of the pro-

edure used in treatment of ASIT [55,56] , and SIT in atomic gases

mploying the slowly varying envelope and phase approximation.

t holds provided that dynamical variables in (10) vary slowly over

he distances small with respect of the wavelength ( ∼ 1/ k ) and

imes of the order of period of resonator modes ( ∼ ω 

−1 ). Under

uch circumstances we may proceed applying the SVEA and we in-

roduce the set of new dynamical variables 

I(x, t) = u (x, t) cos Ψ (x, t) , Ψ = kx − ωt + φ(x, t) , 

S x (x, t) = P x (x, t) cos Ψ (x, t) + P y (x, t) sin Ψ (x, t) , 

 y (x, t) = P y (x, t) cos Ψ (x, t) − P x (x, t) sin Ψ (x, t) , (11)

here ( u ( x, t ), φ( x, t )) ( P x,y,z ) are slowly varying envelope, phase

nd components of the new Bloch vector satisfying the following

onditions: 

∂ 2 F(x, t) 

∂t 2 

∣∣∣∣ � ω 

∣∣∣∣∂ F(x, t) 

∂t 

∣∣∣∣ � ω 

2 |F(x, t) | 
∣∣∣∣∂ 

2 F(x, t) 

∂x 2 

∣∣∣∣ � k 

∣∣∣∣∂F(x, t) 

∂x 

∣∣∣∣ � k 2 |F(x, t) | . (12)

he symbol F(x, t) refers either to u , φ or on P x,y.z . 

Now we substitute (11) into (10) and obtain the set of partially

educed MB – equations: 
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˙ P x (D ) = −(D + 

˙ φ) P y (D ) , 

˙ P y (D ) = (D + 

˙ φ) P x (D ) − gL 

2 h̄ 

uP z (D ) , 

˙ P z (D ) = 

gL 

2 h̄ 

uP y (D ) , 

˙ 
 + 

s 2 k 

ω 

u 

′ = − gs 2 

4 ω 

〈[
k 2 P y (D ) + 2 k (P ′ x (D ) + φ′ P y (D )) 

]〉

u 

(
˙ φ + 

s 2 k 

ω 

φ′ − ω 

2 − s 2 k 2 

2 ω 

)
= − gs 2 

4 ω 

〈[
k 2 P x − 2 k (P ′ y − φ′ P x (D )) 

]〉
. 

(13) 

n accordance with (12) here we kept only the first–order spatial

nd time derivatives), while in the final step, the averaging over

hase has been performed. 4 . Here D = � − ω stands for the de-

uning. 

The term “partially reduced” is used here to distinguish system

13) from the known one of the reduced MBEs (RMBE) describing

he SIT in atomic gases [39] from which it differs through the ex-

licit dependence of parameters in (13) on carrier wave vector ( k )

nd the appearance terms of the first order of spatial derivatives

f Bloch vector components ( P ′ x,y ) and product of spatial derivative

f phase and Bloch vector components ( φ′ P x,y ). They are retained

ere in order to provide an insight in the degree and nature of

pproximations involved in derivation of SIT equations and their

olutions. In the absence of these terms, system (13) attains sim-

lified form 

˙ P x = −(D + 

˙ φ) P y , 

˙ P y = (D + 

˙ φ) P x − gL 

2 h̄ 

uP z , 

˙ P z (D ) = 

gL 

2 h̄ 

uP y (D ) , 

˙ u + 

s 2 k 

ω 

u 

′ = −
〈

k 2 gL 

4 ω 

P y (D ) 

〉
, 

 

(
˙ φ + 

s 2 k 

ω 

φ′ − ω 

2 − s 2 k 2 

2 ω 

)
= −

〈
k 2 gL 

4 ω 

P x (D ) 

〉
, (14) 

part the explicit appearance of the wave vector of carrier wave

 k ), the above system of equations is mathematically equivalent to

hose extensively studied in the context of the theoretical exami-

ations of SIT in atomic gases [39] and condensed media [55] . Ow-

ng to that the whole concept now is fairly well elucidated from

arious points of view although the exact general analytic solutions

re yet unknown. We now examine in which degree these achieve-

ents hold in the QMMs. Also we explore possible relevance of SIT

or the practical applications in novel quantum technologies. 

Note that, due to the direct dependence of the effective qubit-

eld interaction on the carrier pulse wave vector, these known

olutions can not be literally copied and used here. In particu-

ar, comprehensive study requires solution of the MB-equations to-

ether with dispersion law. 

We first recall that in resonance ( D = 0 – the sharp line limit

ith no inhomogeneous broadening) and in the absence of phase

odulation, system (14) may be reduced to sine-Gordon equa-

ion providing that all atoms initially in the ground or excited

tates – P z (−∞ ) = ±1 . Namely, under these conditions first equa-

ion of system (14) yields ˙ P x = 0 implying P x = const ≡ 0 and the

nown trigonometric parameterization of Bloch vector compo-

ents [39,44] : P z = P 0 cos Θ and P y = P 0 sin Θ, holds. Note that the

ormalization condition ( 
∑ 

i = x,y,z P 
2 
i 

= 1 ) implies P 0 = P z (−∞ ) ≡ 1 .

his “ansatz” yields an important relation connecting the pulse
4 This means following formal step 〈 A (�(x, t)) � 〉 � = 

1 
2 π

∫ 2 π
0 d�A (�(x, t)) . o
nvelope and Bloch angle: 

˙ = − gL 

2 h̄ 

u. (15) 

his procedure may be easily generalized to finite detuning and

nhomogeneous broadening by means of the Mcall–Hahn factoriza-

ion ansatz. In this way we were able to find comprehensive solu-

ions of MBEs including the explicit form of dispersion law and

hase explicitly accounting for inhomogeneous broadening. This

ethod relies on assumption that for finite detunings Bloch vector

omponent P y only slightly differs from the bare one and reads: 

 y = P 0 F (D ) sin Θ ≡ F (D ) P y (D = 0) , (16)

here F ( D ) stands for spectral – response function (SRF) 5 . It is

et undetermined and satisfies an obvious normalization condition

 (D = 0) = 1 . In addition, it is required that relation connecting

he Bloch angle and pulse envelope (15) still holds. By means of

his assumption and ansatz relation (16) which we the third equa-

ion of system (13) may be easily integrated resulting in: 

 Z (τ ) = P 0 

(
1 − F (D ) + F (D ) cos Θ

)
. (17)

ubstitution of (16) in equation for pulse envelope, the forth one

n (14) , yields another SG equation 

∂ 2 Θ

∂t 2 
+ 

s 2 k 

ω 

∂ 2 Θ

∂ x∂ t 
= 

k 2 g 2 L 2 〈 F (D ) 〉 
8 ω h̄ P 0 

sin Θ (18) 

ere 〈 F (D ) 〉 ≡ ∫ ∞ 

−∞ 

dD G(D ) F (D ) . Last equation contains two unde-

ermined quantities k and F ( D ). They may be evaluated explicitly

or the traveling wave tape of solutions. Thus, passing to moving

rame t → τ = t − x/ v , with v being the pulse group velocity, the

ast equation becomes: 

∂ 2 Θ

∂τ 2 
− τ−2 

p sin Θ = 0 , τ 2 
p = 

8 γ h̄ ωP 0 
L 2 g 2 k 2 〈 F (D ) 〉 , γ = 1 − sk 2 

ωv 
(19)

ts solution is well known and reads 

(τ ) = 4 arctan e 
− τ

τp , u = u 0 sech 

τ

τp 
. u 0 = 

4 h̄ 

gLτp 
. (20)

y direct calculation we found its area : 

(x ) = − gL 

2 h̄ 

∫ ∞ 

−∞ 

dτu (τ ) ≡ 2 π, (21)

hat is, this is a known 2 π pulse. Its most intriguing feature is a

ossless propagation. To show this explicitly we employ the energy

alance equation which we derive from system (14) . In the first

tep we multiply the fourth equation in (14) by u ; then we elimi-

ate uP y by virtue of the third one, so that we found: 

1 

2 

(
∂ 

∂t 
+ 

s 2 k 

ω 

∂ 

∂x 

)
u 

2 = − h̄ k 2 

2 ω 

∂〈 P z (D ) 〉 
∂t 

. (22) 

inally, integrating it over time we derive the pulse energy loss

gain) per unit length 

∂W 

∂x 
= α(〈 P 0 (D ) 〉 − 〈 P z (x, D ) 〉 ) , α = 

h̄ k 

s 2 
〈 F (D ) 〉 (23)

ere W = 

∫ ∞ 

−∞ 

u 2 (x, t ) dt is the density of pulse energy, while

 0 (D ) = P z (−∞ , D ) ≡ P 0 stands for the initial population inversion. 

Last relation implies that the incoming pulse may be atten-

ated or amplified in dependence on the initial preparation of

edium. Thus, if initially (before the pulse enters the medium)

ore “atoms” are in the ground state ( P 0 < 0 – absorbing medium)

han in the excited state, during the propagation, energy is trans-

erred from pulse to medium which becomes excited while pulse is
5 This is the counterpart of the Dipole spectral – response function in the theory 

f SIT in atomic gases [39] . 
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attenuated. On the other hand, for amplifying media P 0 > 0, pulse

becomes amplified taking the energy from medium. 

This is expected behavior, nevertheless, under the specific con-

ditions pulse exhibits unexpected behavior-loss-less propagation:

EM pulse passes through the media with no loss or gain. The easi-

est way to prove it is to exploit the trigonometric parameterization

of Bloch vector components (16) and (17) . In such a way we obtain

∂W 

∂x 
= αP 0 (1 − cos �) . (24)

Apparently, pulses with specific values of area – Θ = n 2 π transit

through QMM with no loss or amplification. Nevertheless, lossless

propagation is just a particular side of the relationship between

the area of the pulse and its features. The most comprehensive in-

sight is provided by the area theorem derived in the appendix : 

∂ Θ(x ) 

∂x 
= 

β

2 

sin θ, β = 

gLk 

2 ω 

G(0) , (25)

its solutions satisfying Θ = Θ0 at x = x 0 is 

tan (Θ/ 2) = tan (Θ0 / 2) e ±(β/ 2)(x −x 0 ) . (26)

That is, area theorem holds in the present context, so that the

pulse propagating in QMM, should exhibit similar features as in

the case of SIT in atomic gases [39,44] . In particular, we may

expect that, for weak pulses Θ0 � π linear decay of pulse area

( ∼ e −βx ) would be observed in accordance with the Beer’s law. As

initial area approaches and exceeds π , fully new features should be

observed: for Θ � π pulse area does not suffer attenuation during

propagation when Θ = nπ, however pulses whose areas are even

(odd) multiples of π are stable (unstable). Here we must note that,

at this stage of our analysis, all what was said here is just a hint

that these effects may appear in flux based QMM, but, for a def-

inite conclusions knowledge of the wave vector of carrier wave is

required. Its evaluation is the subject of next section. 

4. Evaluation of dispersion law and phase 

Due to the presence of unknown quantities, DSRF, k ( ω) and

phase, the above solutions do not give comprehensive picture of

EM pulse propagation in QMM. For their evaluation one must go

beyond the SG model and must exploit system (14) which we

rewrite in terms of new variable t → τ = t − x/ v : 

P x,τ = −(D + φτ ) P y , 

P y,τ = (D + φτ ) P x − Lg 

2 h̄ 

uP z , 

P z,τ = 

Lg 

2 h̄ 

uP y , (27)

u τ = − Lk 2 g 

4 γω 

〈 P y 〉 , 

u 

(
φτ − ω 

2 − s 2 k 2 

2 γω 

)
= − Lk 2 g 

4 γω 

〈 P x 〉 , 

From this system one may determine phase ( φ) and dispersion

law ( k ( ω)). Note that the phenomenon of SIT, if it can arise at

all, is possible in resonance or near it, where ω ∼ ks . Otherwise,

when ϖ	ω or ϖ�ω pulse can not excite (de-excite) “atoms” from

ground (excited) state and inversion population stays ± 1 “forever”,

i.e. for time for which pulse pases medium. 

Accordingly, we may simplify the above equations in the follow-

ing way: s 2 k 2 − ω 

2 = (sk − ω)(sk + ω) � 2 ω(ks − ω) , while γ →
1 − s/ v . 

We now differentiate the last equation in (27) , in which we

then substitute P x, τ from the first equation. This yields 
ττ + 2 φτ u τ −
(

ω − sk 

γ
− ˜ D 

)
u τ = 0 . (28)

n approaching this result we transformed average value RHS side

f differentiated equation employing the factorization ansatz as

ollows 〈 DP y 〉 = 

〈 DF (D ) 〉 
F (D ) 

P y . In parallel, in order to eliminate P y , we

se the third equation in (27) which, through the factorization

nsatz 
(〈 P y 〉 ≡ 〈 F (D 〉 P y (D = 0) 

)
, is rewritten as 

 y = −4 γω 

Lgk 2 
F (D ) 

〈 F (D ) 〉 u τ , (29)

inally, after the integration we have 

τ = 

1 

2 

(
˜ D − ω − ks 

γ

)
, ˜ D = 

〈 F D 〉 
〈 F 〉 . (30)

his relation may be used for the determination of the “dispersion

elation” k = k (ω) which is essential for further study, especially

or the understanding of the nature and existence of particular

ypes of solutions. At this stage it is possible to put φτ = 0 . This is

onsistent with the slowly varying phase approximation according to

hich ω and k are interpreted as pulse carrier frequency and wave

ector. Therefore, φτ cannot contain a constant part independent

f τ . 

Otherwise, according to the last equation, phase would renor-

alize the wave vector and frequency: k → k − const 
v , ω → ω +

onst . This fully contradicts to the initial demand that φ( x, t ) is

low variable. In this way we easily obtain: 

 ± = 

˜ D 

v 
± ω 

s 

√ 

1 − 2 ̃

 D 

ω 

, (31)

wing to the preceding discussion near resonance solution reads:

 ≈ ω 

s 
−

˜ D 

s 

(
1 − s 

v 

)
. (32)

ow, when we have found carrier wave vector and when we es-

ablished that the phase is constant, we may proceed and evaluate

olutions of MBEs. Note that to this end we may use SG equation,

owever, such solutions contain still undetermined quantity F ( D ).

t may be found from first three equations of system (27) in which

e now exploit the fact that φτ ≡ 0. 

Substitution of the (17) in the second equation of system (27) ,

here, in accordance with the factorization ansatz , we took P y,τ =
 0 F (D ) Θτ cos Θ, results in Θτ = 

D 
1 −F (D ) 

P x . Finally, upon differenti-

ting this expression over τ and combining it with the first equa-

ion in (27) , we found 

ττ − F (D ) D 

2 

1 − F (D ) 
sin Θ = 0 . (33)

refactor in the last expression has dimension of the square of the

nverse time, and clearly play the role of reciprocal duration time:
−2 
p = 

F D 2 

1 −F (D ) 
. From this expression we found DSRF as 

 (D ) = 

1 

1 + (Dτp ) 2 
. (34)

or the evaluation of envelope we use system (27) from which

e eliminate Bloch vector components and obtain a �3 -type non-

inear evolution equation for envelope. Thus, substituting φτ = 0

n (27) we obtain the following set for next two Bloch vector

omponents. 

P x = 

DF (D ) 

〈 F 〉 
4 γω 

Lgk 2 
u, 

 z = P 0 − γω 

h̄ k 2 
F (D ) 

〈 F (D ) 〉 u 

2 (35)
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Fig. 3. Illustration of the impact of detuning on the dependence of the pulse ve- 

locity on duration time in the sharp line limit. Pulse velocity is measured in units 

of s , while pulse duration time ( τ p ) is measured in units of τ 0 . Full lines corre- 

spond to so called pulse in the attenuator, i.e. all qubits in the ground stste before 

pulse enters the system – P 0 = −1 at τ = −∞ , while the dotted ones stay for am- 

plifier P 0 = 1 . Black line corresponds to resonance, while D τ 0 takes 0.1,0.2 for red, 

blue curves, respectively. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 

Fig. 4. Pulse velocity vs duration time in the presence of inhomogeneous broaden- 

ing in the limit ωτ ∗ > 1. Black, red and blue lines correspond to τ ∗/ τ ′ 1,0.2 and 3, 

respectively. (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 
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f  
sing the last two equations, and the one for P x (29) we obtain

onlinear equation for envelope 

 ττ = 

u 

2 
0 

2 

u − u 

3 , (36)

he peak amplitude is given by 

 

2 
0 = 

(
4 h̄ 

Lg 

)2 (
L 2 g 2 k 2 P 0 
8 h̄ ωγ

〈 F (D ) 〉 
F (D ) 

− D 

2 

)

= 

2 h̄ k 2 P 0 
ωγ

〈 
1 

1 + D 

2 τ 2 
p 

〉 
≡ 2 h̄ k 2 P 0 

ωγ
〈 F (D ) 〉 . (37) 

ts first integral reads: 

 τ = 

ag 

4 h̄ 

u 

√ 

u 

2 
0 

− u 

2 . (38) 

ts solution is 

 = u 0 sech 

τ

τp 
, τp = 

4 h̄ 

Lgu 0 

. (39)

sing the above–established relations we found the remaining re-

ults: 

P x (τ ) = 

2 Dτp P 0 

1 + (τp D ) 2 
sech 

τ − τ0 

τp 
, (a ) 

 y (τ ) = 

2 P 0 
1 + (τp D ) 2 

tanh 

τ−τ0 

τp 

cosh 

τ−τ0 

τp 

, (b) 

P z (τ ) = P 0 

(
1 − 2 

1 + (τp D ) 2 
sech 

2 τ − τ0 

τp 

)
, (c) . (40) 

inally, the relation connecting pulse velocity and duration time

eads. 

γ(
1 − ˜ D 

ω γ
)2 

= P 0 
τ 2 

p 

τ ′ 2 〈 F (D ) 〉 τ ′ 2 = 

ωL 2 g 2 

8 h̄ s 2 
(41)

his is quadratic equation for pulse velocity. Existence of its so-

utions depends on initial conditions: for attenuator only sub-

uminal ( v < s ) pulse propagation is possible, while in the ampli-

ying medium super-luminal ( v > s ) motion emerges. 

In the physically meaningful case, i.e, near the resonance, its

pproximate solution reads 

v 
s 

≈ 1 + 

2 ̃ D P 0 
ω 

τ 2 
p 

τ ′ 2 〈 F (D ) 〉 
1 − P 0 

(
1 − 2 ̃ D 

ω 

)
τ 2 

p 

τ ′ 2 〈 F (D ) 〉 
(42) 

. Pulse delay 

Pulse slowing down (absorbing QMM) or acceleration (amplify-

ng QMM) together with lossless propagation is the main feature

f the SIT. Now we shall analyze the dependence of pulse velocity

n input parameter – pulse duration time. 

.1. Pulse delay in the absence of inhomogeneous broadening 

In the sharp-line limit above equation simplifies to 

v 
s 

≈
1 + 

2 DP 0 
ω 

τ 2 
p 

τ ′ 2 (1+ D 2 τ 2 
p ) 

1 − P 0 
(
1 − 2 D 

ω 

) τ 2 
p 

τ ′ 2 (1+ D 2 τ 2 
p ) 

(43) 

t is graphically presented in Fig. (3) , where we presented the

ependence of the pulse velocity on τ p . The case of ‘attenuator’

 P 0 = −1 ) and ‘amplifier’ are presented in parallel. Note that in the

atter case theoretical description of in terms of system (10) is not

ully satisfactory. Namely, when ‘atoms’ are excited, processes of

pontaneous emission take place. Thus, the decay time, in general,
an not be regarded to be small in comparison with pulse dura-

ion time. For that reason present results hold only for extremely

hort pulses, while the realistic description requires accounting for

omogeneous relaxation explicitly. It may be done by adding relax-

tion times in system of MBes. For the attenuator, our main result

s that detuning may enhance pulse slowing down. 

The most interesting result here is that in the proposed device

ne, in principle, may expect significant slowing down of the EM

adiation. It may be even stopped. This is characteristic for flux

ubit chain and originates from the ‘dispersion law’ of carrier wave

ector, which also, in accordance with (31) , imposes condition for

he transparency 2 ̃  D /ω < 1 . 

.2. Impact of inhomogeneous broadening 

Size fluctuation of the qubit ensemble with ‘atomic’ transition

requencies centered around mean qubit frequency ω , may be
0 
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Fig. 5. Illustration of the dependence of the velocity on duration time in the limit: 

ωτ ∗ → 0. Full line corresponds to absorbing media, while a dotted one represents 

amplifying ones. 
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described by means of the distribution function [45] 

G(D ) = 

1 √ 

2 πσ
e −

D 2 

2 σ2 , ˜ D = � − ω (44)

The variance ( σ ) should be chosen to reproduce experimental data

[37,45] – qubit inhomogeneous level broadening full width at half

maximum. For a convenience we may introduce the inhomoge-

neous broadening time τ ∗ ∼ 1/ σ . 

By means of this distribution function we may evaluate re-

quired average values 〈 F ( D ) 〉 and 

˜ D : 

〈 F (D ) 〉 = 

√ 

2 

π

τ ∗

τp 

∫ ∞ 

0 

e 
− τ∗2 

2 τ2 
p 

z 2 

dz 

1 + z 2 
, 

≡ τ ∗
√ 

2 τp 

e 

(
T ∗

2 τp 

)2 

erfc 

(
T ∗

2 τp 

)
, (z = Dτp ) . (45)

˜ D = 

1 

4 πτp 

E 1 (Z 0 ) 

erfc 

(
T ∗

2 τp 

) , (46)

here erfc (x ) = 

2 √ 

π

∫ ∞ 

x 
dt e −t 2 , is the complementary error func-

tion, while E 1 (Z 0 ) = 

∫ ∞ 

Z 0 

e −t 

t 
dt is exponential integral . 

According to our results, pulse properties, its delay (43) in

particular, depend substantially on the ratio of the characteristic

inhomogeneous broadening relaxation time T ∗ ∼ 1/ σ and pulse

duration. In the broad “line” limit τ ∗ 	 τ p , above average values

approaches 

〈 F (D ) 〉 ≈ τ ∗
√ 

2 τp 

, ˜ D ≈
E 1 

(
ω 

2 τ ∗2 

2 

)
2 πτp 

, (47)

and the pulse velocity in units of s approaches: 

v 
s 

≈
1 + P 0 

E 1 ( 
ω 2 τ ∗2 

2 
) τ ∗

√ 

2 πωτ ′ 2 

1 − P 0 √ 

2 

(
1 − E 1 ( 

ω 2 τ ∗2 

2 
) √ 

2 πωτp 

)
τp τ ∗

τ ′ 2 

(48)

The above result imply that the pulse delay substantially depends

on the ratio of carrier wave period of oscillation ( ∼ 1/ ω) and the

scale of the pulse broadening τ ∗. In particular, for small values

of ωτ ∗, exponential integral diverges, while rapidly tends to zero

in the opposite limit. In the latter case normalized velocity ( v / s )

versus duration time attains simple form: 

v 
s 

≈ 1 

1 − P 0 
τ∗
τ ′ 

τp 

τ ′ 
, (49)

which is practically identical to a corresponding relation in the

context of SIT in media composed of natural atoms, atomic vapors,

for example [39,44] . In the present context ratio τ ∗/ τ ′ defines the

degree of the impact of inhomogeneous broadening on pulse delay.

Thus sharper distribution is more influential then the broad one. 

In the opposite limit, ωτ ∗ → 0, exponential integral highly di-

verges. Nevertheless, for each particular finite, no matter how

small, value of ωτ ∗, E 1 may attain large enough values, so that the

numerator in (48) can go to zero. That is, pulse may be stopped.

To illustrate it we picked ωτ ∗/2 ∼ 0.0707 for which E 1 ∼
√ 

2 π . Now

velocity–duration time relation reads: 
v 
s 

≈ 1 + 7 P 0 
τ ∗2 

τ ′ 2 

1 − P 0 √ 

2 

τp 

τ ′ 
τ∗
τ ′ + 

P 0 
2 

τ ∗2 

τ ′ 2 
. (50)

In Fig. (5 ) we have plotted velocity duration time dependence

n the limit ωτ ∗ → 0. The main difference with respect to previ-

us case is the appearance of the maximal (minimal for amplify-

ng medium) velocity. It is determined by the values of physical

arameters, essentially depends on the broadening time τ ∗. For the

pecial case we considered here it tends towards v ≈ 1 + 7 P 0 
τ ∗2 

τ ′ 2 . 

.3. Behaviour of the Beer’s law coefficients 

One of the most interesting features of the SIT pulse propagat-

ng in QMM is the dependence of the absorption coefficient on

he pulse duration time. This is the consequence of the disper-

ion law (32) . Thus, exploiting that relation, absorption coefficient

n (25) becomes: 

= β0 

(
1 − P 0 〈 F (D ) 〉 ˜ D 

ω 

τ 2 
p 

τ ′ 2 

)
, β0 = 

LgG(0) 

2 s 
. (51)

n the sharp line limit we predict some very interesting results.

n the absorbing media ( P 0 = −1 ) absorption coefficient increases

ith the rise of the pulse duration. Wider pulses are more ab-

orbed than the sharp ones. In the amplifying media ( P 0 = 1 ) op-

osite behaviour is observed. This coefficient, which now corre-

ponds to pulse amplification, decreases with pulse width: sharper

ulses are more amplified then the wide ones. This is illustrated on

 6 ) where the dependence of absorption (amplification) coefficient

n soliton duration time is sketched. One of the most intriguing

esult is vanishing of the amplification coefficient: for each pulse

or which condition D / ω > D 

2 τ ′ 2 is satisfied, there appear a critical

alue of the duration time, for which β approaches zero. 

Such behaviour is quite different than in the case of an ordinary

IT where pulse duration has no any impact on its amplification or

bsorption. 

In the case finite broadening absorption (amplification) coeffi-

ient very weakly depends on pulse duration as can be seen from

he explicit expression 

≈ β

(
1 − P 0 

2 

√ 

2 π

τ ∗

ωτ ′ 2 e 
(

τ∗√ 
2 τp 

)2 

E 1 (z 0 ) 

)
, (52)

here, due to the restriction imposed by the condition ( τ p 	 τ ∗)

bsorption coefficient practically does not depend on pulse width.

evertheless, it is still pretty different from the corresponding
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Fig. 6. Illustration of the “Beer’s coefficient” on pulse width. Dotted (full) lines cor- 

respond to amplifier (absorber) in all cases we took D/ω = 1 / 2 while D 2 τ ′ 2 takes 

values, 0.5, 1 and 1.2 for blue, red and black, lines, respectively, respectively. (For 

interpretation of the references to color in this figure legend, the reader is referred 

to the web version of this article.) 
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uantities in ordinary SIT, but the width of the inhomogeneous

roadening distribution takes role of pulse duration. In particular,

ince the exponential integral does not depend on τ ∗, coefficient

is linear function of τ ∗, decreasing for absorbing media and in-

reasing for amplifying. As ωτ ′ rises, E 1 rapidly approaches zero

nd β → β0 . 

. Concluding remarks 

We have demonstrated that relaxation phenomena, specifically

nhomogeneous broadening of the energy levels of the artificial

toms (qubits), may be used in order to achieve and maintain

uantum coherence in complex systems built of a large number

f superconducting qubits. For that purpose we have exploited the

act that the emergence of some quantum coherent phenomena,

elf induced transparency, in particular, require inhomogeneous

roadening of ‘atomic’ levels. We propose that the self-induced

ransparency may be observed in a quantum metamaterial built

f the large number of flux-qubits inductively coupled to super-

onducting transmission line. In–homogeneity of the flux qubit en-

rgy levels arises due to fluctuations of the sizes of JJ units stem-

ing from the fabrication conditions. In contrast to ordinary SIT

n atomic gasses where it corresponds to dissipation-less transmis-

ion of light pulse, here we predicted analogous effect but for the

ropagation of electric current through the transmission line. 

One of the most intriguing consequence of the self-induced

ransparency in flux – qubit based QMMs is the possibility to con-

rol the pulse velocity on demand. The main benefit is the signifi-

ant slowing down of the pulse. For some values of system param-

ters it may be even stopped. 

Necessary control may be provided by varying flux-qubit res-

nant frequency by means the external field. Thus, one may use

he external magnetic field in order to control the degree of in-

omogeneous broadening. According to [61] it is necessary to fab-

icate control lines to apply magnetic flux on the qubits and this

ill enable one to tune the resonant frequency of each qubit. We

ope that the pulse velocity management that is predicted in the

resent work would provide an interesting experimental problem

or practical quantum superconducting metamaterials. 
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ppendix A. Derivation of the area theorem 

We exploit the system (14) where we integrate the fourth equa-

ion over time from −∞ to ∞ . This yields 

∂θ

∂x 
= 

〈
L 2 g 2 k 

8 h̄ 

∫ ∞ 

−∞ 

dt P y (x, t ; D ) 

〉
≡ (53) 

L 2 g 2 

8 h̄ s 2 

∫ ∞ 

−∞ 

dD G(D ) 

∫ ∞ 

−∞ 

kP y (x, t; D ) (54) 

or the mathematical convenience we now introduce an auxiliary

ariable S D (x, t) = P x + iP y which, by virtue of the first two equa-

ions of system (14) , satisfies the following evolution equation: 

∂S D 
∂t 

= 

˙ �S D − i 
Lg 

2 h̄ 

uP z , �(t) = (D + i �) t + φ(t) (55)

he presences of phase time derivative ( ˙ φ(t) ) in (59) and complex

etuning � − i � indicate, respectively, the accounting for of the

ulse chirping and the homogeneous broadening – due to trans-

erse relaxation � = 1 /T 2 . It is here introduced ad hock (by hand)

nd corresponds to simplified description of relaxation processes

y adding phenomenological damping terms in Eq. (14) . 

We now proceed in a manner of Lamb [59,60] formally inte-

rating the above equation 

 D = S h (t) − i 
Lg 

2 h̄ 

∫ t 

−∞ 

u (x, t ′ ) P z (x, t ′ ) e i (�(t) −�(t ′ )) dt ′ (56) 

 h stands for the homogeneous solution. This is critical point since,

ccording to huge literature on AT, there are two quite different

ays how to proceed. That is, according to original approach of

cCall and Hahn [44] , only homogeneous part matters and should

e included in handling the integration in (56), while in latter

ork only the particular part was taken into account. 

In handling the integration we now assume that the aforemen-

ioned conditions for the observation of the SIT specified through

1) or (2) are satisfied. In either case there exist a widely separated

ime scales characterizing a different physical processes and facili-

ate the evaluation the time integral. It may be seen more clearly

fter the transition to new variable τ = t − t ′ so that the last ex-

ression becomes: 

 D = S h (t) − i 
Lg 

2 h̄ 

∫ ∞ 

0 

u (x, t − τ ) P z (x, t − τ ) e i (�(t) −�(t−τ )) dτ. 

nder the aforementioned conditions amplitude, phase, and popu-

ation inversion are slow variables, as compared with exponential

art which rapidly oscillates. Thus, for all of them we may take

(x, t − τ ) ≈ F(x, t) and we have approximate result: 

 D ≈ iu (x, t) P z (x, t) 

∫ ∞ 

0 

e −i (D −i �) τ dτ. 

fter that the integral of the exponential factor is trivial, giving the

ell known singular form: 

1 

iD + �
→ P 

−i 

D 

+ πδ(D ) (57) 

https://doi.org/10.13039/501100004564
https://doi.org/10.13039/501100005271
https://doi.org/10.13039/501100003448
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Separating real and imaginary part we obtain 

P x (x, t) ≈ u (x, t) P z (x, t) P 

1 

D 

�⇒ lim 

�→ 0 

D 

D 

2 + �2 
u (x, t) P z (x, t) (58)

P y (x, t) = πδ(D ) u (x, t) P z (x, t) (59)

∂θ

∂x 
= 

L 2 kg 2 

8 h̄ s 2 
G(0) 

∫ ∞ 

−∞ 

u (x, t; D = 0) P z (x, t; D = 0) dt. (60)

In the resonance, which is obviously the case, u (x, t) =
2 h̄ 
Lg 

˙ �, while P z = P 0 cos �, that is u (x, t; D = 0) P z (x, t; D = 0) =
2 h̄ 
Lg P 0 

˙ � cos � ≡ 2 h̄ 
Lg P 0 

∂ 
∂t 

sin � and the integral in the above equation

is easily evaluated and the known form of area theorem is ap-

proached: 

∂θ

∂x 
= 

β

2 

sin θ, β = 

Lgk 

2 s 2 
G(0) (61)

In addition, by virtue of the above explicit expression for P x fifth

equation defining the phase modulation becomes (
˙ φ + 

s 2 k 

ω 

φ′ − ω 

2 − s 2 k 2 

2 ω 

)
= −

〈
Lg 

8 h̄ s 2 
�

kD 

2 + �2 
P z (x, t; D ) 

〉
, (62)

Appendix B. Derivation of average values 

We focus on evaluation of ˜ D = 

〈 F (D ) D 〉 
〈 F (D ) 〉 . 

By direct substitution corresponding expressions in the above

formula we have: 

˜ D = 

1 √ 

2 π〈 F (D ) 〉 
∫ ∞ 

−ω 

De −
D 2 

2 σ2 

1 + (τp D ) 2 
dD (63)

In order to avoid the meaningless – zeroth result of integration,

here we had to use the true lower limit of integration ( −ω) instead

of the extended one ( −∞ ). In order to evaluate explicitly this in-

tegral we had to perform three subsequent substitution of integra-

tion variable. First we introduce y = τp D, after which the lower in-

tegration limit became −ωτp , while, the resulting integral is of the

same form as the original one with redefined coefficients. In the

second step following replacement is introduced: z = 1 + y 2 . This

yields: 

˜ D = 

1 √ 

2 π〈 F (D ) 〉 
τ ∗

2 τ 2 
p 

∫ ∞ 

1+(ωτp ) 2 

e 
−( τ∗√ 

2 τp 
) 2 

z 
dz (64)

Finally, after the substitution Z = 

(
τ ∗

√ 

2 τp 

)
2 z , last expression may

be written through the exponential integral as follows: 

˜ D = 

1 √ 

2 π〈 F (D ) 〉 
τ ∗

2 τ 2 
p 

e 

(
τ ∗

√ 

2 τp 

)
2 

E 1 (Z 0 ) , 

Z 0 = 

[ 
1 + (ωτp ) 

2 
] (

τ ∗
√ 

2 τp 

)
2 (65)

where 

E 1 (Z 0 ) = 

∫ ∞ 

Z 0 

dZ 
e −Z 

Z 
(66)
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