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Tinnitus is the conscious perception of a sound without a corresponding external
acoustic stimulus, usually described as a phantom perception. One of the major
challenges for tinnitus research is to understand the pathophysiological mechanisms
triggering and maintaining the symptoms, especially for subjective chronic tinnitus. Our
objective was to synthesize the published literature in order to provide a comprehensive
update on theoretical and experimental advances and to identify further research and
clinical directions. We performed literature searches in three electronic databases,
complemented by scanning reference lists from relevant reviews in our included
records, citation searching of the included articles using Web of Science, and manual
searching of the last 6 months of principal otology journals. One-hundred and thirty-
two records were included in the review and the information related to peripheral and
central mechanisms of tinnitus pathophysiology was collected in order to update on
theories and models. A narrative synthesis examined the main themes arising from
this information. Tinnitus pathophysiology is complex and multifactorial, involving the
auditory and non-auditory systems. Recent theories assume the necessary involvement
of extra-auditory brain regions for tinnitus to reach consciousness. Tinnitus engages
multiple active dynamic and overlapping networks. We conclude that advancing
knowledge concerning the origin and maintenance of specific tinnitus subtypes origin
and maintenance mechanisms is of paramount importance for identifying adequate
treatment.

Keywords: idiopathic, auditory system, pathophysiology, central tinnitus, peripheral tinnitus, causes,
maintenance

INTRODUCTION

Tinnitus is a prevalent symptom associated with various conditions and diseases; both otological
and non-otological (Baguley et al., 2013). It affects over 70 million people in Europe and more than
50 million people in the United States (Heller, 2003; Henry et al., 2005; Baguley et al., 2013). The
heterogeneity of tinnitus causes a substantial problem in its classification, which has hampered both
basic and clinical research. A large majority of people with tinnitus have experienced the symptoms
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for at least 3 to 6 months (i.e., chronic), and their condition
has an unknown etiology (i.e., it is subjective). This review
considers subjective chronic tinnitus. A major challenge for the
field is to identify the underlying causes of subjective chronic
tinnitus for developing specific treatments that address the
distinct manifestations of tinnitus (Norena, 2015). Although
much research is underway, the precise pathophysiology of
tinnitus remains unclear.

Tinnitus can be classified according to various criteria
including causes, comorbidities, symptoms characteristics, and
psychological burden. The most common form of tinnitus is
described as the conscious perception of a phantom sound or
noise perceived in the ear(s) or head in absence of a known
external or internal stimulus (Schlee et al., 2014) and this is
often associated with a hearing loss. Tinnitus has been further
classified according to its initial triggers as a primary tinnitus,
which is either associated with sensorineural hearing loss (SNHL)
or is idiopathic (or unknown cause), and a secondary tinnitus,
which is related to other causes such as an organic origin
(Tunkel et al., 2014). Somatic or somatosensory tinnitus is
a subtype of subjective tinnitus, in which tinnitus perception
is caused by an alteration in somatosensory afference from
the cervical spine or temporomandibular area (Michiels et al.,
2018). Another causal classification strategy is based on the
origin of tinnitus in relation to the site of impairment in the
auditory pathway, and splits tinnitus into peripheral and central
types (Henry et al., 2014). Tinnitus duration is also a common
symptom classification since this can distinguish patients where
tinnitus is maintained over the longer term after its initial onset.
Acute tinnitus has been defined as an onset within the past
6 months, whereas chronic tinnitus refers to symptoms lasting
6 months or longer (Tunkel et al., 2014). However, the precise
temporal boundary from acute to chronic is not standardized,
since other authors report the transition from acute to chronic
tinnitus anywhere between 3 and 12 months (Hall et al., 2011;
Rabau et al., 2015). Another symptom classification is based
on a description of the tinnitus sound such as whether it is
continuous or intermittent, pulsatile or non-pulsatile. Questions
about duration and symptom characteristics are often asked in
case history questionnaires (e.g., Tinnitus Sample Case History
Questionnaire, Schecklmann et al., 2015).

Another classification system takes account of the functional
and psychological impacts caused by tinnitus, and this is
particularly important for those with chronic bothersome
tinnitus. A number of questionnaires have been designed
to assess self-reported impacts and examples include the
Tinnitus Handicap Inventory (Newman et al., 1996), Tinnitus
Questionnaire (Hallam et al., 1988), Tinnitus Functional Index
(TFI, Meikle et al., 2012), and Tinnitus Primary Function
Questionnaire (TPFQ, Tyler et al., 2014). The correlation
between total scores of THI and TQ is 0.641 (P < 0.0001),
indicating that they assess a similar tinnitus-related construct. Of
note, the German version of the TQ (Hiller and Goebel, 1992),
frequently used in the German-speaking countries, is a modified
version of the original TQ developed in the United Kingdom.
Burden can be represented by a score on a continuous scale, by
narrative description on a categorical scale, or by a dichotomous

distinction such as between “compensated” or “decompensated”
tinnitus as measured by the German version of the TQ.

Whether or not any of these classification strategies are
informative with respect to the pathophysiology of tinnitus
remains controversial. Concerning its origin, there is a minimum
consensus that tinnitus is related to aberrant neural activity
at certain levels of the auditory system (Jastreboff, 1990).
“Peripheral tinnitus” refers to the auditory perception that
results from aberrant neural activity at the cochlear level
and transmitted through the auditory pathways (Jastreboff,
1990; Guitton et al., 2003; Puel and Guitton, 2007). “Central
tinnitus” refers to the auditory perception that is generated in
auditory brain centers by the aberrant neural activity and is
sustained by that aberrant neural activity (Eggermont, 2005,
2007; Kaltenbach, 2006, 2007; Mulders and Robertson, 2009).
The auditory centers perform an important role because
they are involved in the generation of the tinnitus-related
activity (Liberman and Dodds, 1984a,b; Heinz and Young,
2004; Norena, 2015). Despite this distinction, “peripheral
tinnitus” and “central tinnitus” are not completely independent
forms (Norena, 2011). This article uses systematic review
methodology to identify the latest knowledge regarding the
different pathophysiological mechanisms that trigger and
maintain tinnitus symptoms.

IDENTIFYING AND SELECTING
APPROPRIATE LITERATURE SOURCES

Eligible information sources were review articles and original
research articles reporting basic science, exploratory and
investigational studies. We included animal and human
studies investigating tinnitus pathophysiology, but we did not
include studies where the primary focus was an associated
condition (such as Ménière’s disease, otosclerosis, vestibular
schwannoma, chronic otitis media, tumor, autoimmune
diseases, neurodegenerative or demyelinating disease, or cases
of ototoxicity) with tinnitus as an incidental observation. Other
exclusion criteria were articles not written in English language,
and records relating solely to objective or somatosensory tinnitus.

Initial literature searches were conducted in October 2017
using three literature search platforms: PubMed, Medline
and Web of Science and the search terms “pathophysiology”
and “subjective chronic tinnitus.” The initial search was
complemented by scanning reference lists from relevant reviews
in our included records, citation searching of the included
primary scientific articles using Web of Science. Additionally, in
May 2018, we performed an update by manually searching key
otology journals. An example search strategy for PubMed is given
in Supplemental Material 1.

The initial search retrieved 373 records. After duplicates had
been removed, 168 records remained for abstract screening. From
those, 47 records were excluded as not related to the topic of
the review or not meeting the inclusion criteria. The remaining
121 full texts were screened again for eligibility (Figure 1). Fifty
additional records were identified by manual search resulting
in a total of 171 publications. The records were then split into
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FIGURE 1 | Flowchart of the literature search and selection process.

equal parts and the reading and data extraction was assigned to
two persons working in parallel. After this step, the data were
assessed by the leading authors. In case of disagreement between
the extracted or interpreted data, arbitration by a third member of
the team was obtained. The information extraction and synthesis
focused on tinnitus pathophysiology.

POPULATION CHARACTERISTICS
INDICATING PATHOPHYSIOLOGY

A study in Italy performed by Martines et al. (2010a,b,c)
estimated that in 30% of cases, tinnitus had an undetermined
etiology. It is well established that tinnitus often accompanies
noise-induced hearing loss and presbycusis. According to Davis
and Rafaie (2000), approximately 90% of people with tinnitus
in the United Kingdom have some form of hearing loss. Large-
scale population studies have identified other risk factors such as
vascular disease, hypertension, diabetes, autoimmune disorders,
head injury, and degenerative neural disorders (Rojas et al., 2003;
Sindhusake et al., 2004).

COMPARING ANIMAL AND HUMAN
NEUROPHYSIOLOGICAL STUDIES

Some of the major advantages of the animal model as a way to
investigate the pathophysiology of tinnitus are the ability to (i)

control the etiology via controlled experimental manipulation
of the noise environment or ototoxic drug exposure, (ii) to
randomly assign animals to experimental or control groups,
increasing the power of statistical testing, and (iii) to apply a
wide range of experimental tools (from molecular to behavioral).
Nevertheless, some disadvantages of using animals for tinnitus
research exist, the main one being the lack of a standardized
animal model of tinnitus. These fundamental challenges give
rise to concerns about the reliability and interpretation of
results (Lobarinas et al., 2013; Brozoski and Bauer, 2016). Noise
exposure in the animal model is often traumatic and acute, unlike
the more common human experience of moderate and prolonged
noise exposure, while exposure to highly concentrated ototoxic
agents such as salicylate are rare in humans. An unresolved issue
is the distinction between acute and chronic tinnitus in animal
models, mainly due to different experimental paradigms and
different species used. An agreed classification of what constitutes
acute versus chronic tinnitus in the animal model is of special
importance for future studies regarding the progression from
acute to chronic forms, especially since this could provide the
basis for seeking objective markers of its natural history. The
majority of research done with help of animal models points to
noise-induced hearing loss and tinnitus as an adequate model for
the development of chronic tinnitus (Bauer and Brozoski, 2001;
Turner and Larsen, 2016). The report of Pace et al. (2016) focuses
on a novel experimental paradigm and makes distinction between
the salicylate-induced tinnitus (tinnitus duration 5 days) and
noise-induced tinnitus (tinnitus duration 7 weeks). An attempt to
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define such criteria has already been made using clinical studies
(Leaver et al., 2016a). Based on the obtained findings, species-
specific criteria could be expected to emerge in animal models
of tinnitus.

The pioneering and widely applied salicylate model (Jastreboff
et al., 1988) induces tinnitus both by direct central effects on
the auditory system and by induction of peripheral hearing loss
(Eggermont, 2015). For a detailed review on animal models of
tinnitus, the reader could refer to Brozoski and Bauer (2016).
Questions about altered neural spontaneous firing rates in the
auditory pathway, abnormal neural synchrony and changes in
tonotopic representation have been obtained from animal studies
at the level of individual neurons and neuronal assemblies, and
in human studies at a much more macroscopic population level
(Adjamian et al., 2009; Eggermont, 2015). The main problem
here is the translation of research from subcellular neuronal
events found in animal models to the brain activity patterns
observed in people with tinnitus. The differences in measurement
technique bring important caveats for drawing analogies between
animal and human findings. For example, the assumption that the
interpretation of coupling between local neural activity and the
responses monitored using blood oxygenation level-dependent
functional magnetic resonance imaging (BOLD-fMRI) are still
unclear (Adjamian et al., 2009).

One of the overall impressions about the neurophysiological
results obtained from animal models of tinnitus is that they
typically consider tinnitus as the consequence of an acute
peripheral lesion associated with severe hearing loss. In contrast,
human neuroimaging studies tend to emphasize the role of
auditory thalamus and auditory cortex in the chronification and
maintenance of tinnitus (Eggermont, 2015; Brozoski and Bauer,
2016).

SITES OF TINNITUS GENERATION

A fundamental question in tinnitus pathophysiology concerns
the neural component that generates tinnitus (Henry et al., 2005).
Zenner (1998) initially postulated that tinnitus could originate in
any relevant anatomical structure; from the ear throughout the
central auditory pathways. Initial speculations favored a cochlear
origin since tinnitus can be perceived in the ears and also due to
the fact that there is a strong association between the frequency
of psychoacoustic identified tinnitus and the audiometric profile
of hearing thresholds (Sereda et al., 2011). These opinions were
contradicted by the fact surgical section of the auditory nerve
does not eliminate tinnitus in every case, which favors the
hypothesis about the central rather than peripheral origin of
tinnitus (House and Brackmann, 1981).

Nowadays, it is well established that many forms of tinnitus
reflect a complex interaction between peripheral and central
mechanisms within the auditory pathway (Norena and Farley,
2013). Usually two or more triggers (e.g., noise exposure, hearing
loss, emotional distress, and somatosensory factors) are necessary
to elicit a noticeable tinnitus (Shore et al., 2007). Tinnitus can
be seen as a pathology of neural plasticity with a molecular
and a systemic component. The molecular component has a

cochlear component related to the initiation phase of tinnitus;
while the systemic component has a central aspect associated
to the long-term maintenance of tinnitus (Satar et al., 2003;
Guitton, 2012; Norena and Farley, 2013; Norena, 2015; Sedley
et al., 2015). It has been suggested that peripheral tinnitus
may originate from the dysfunction of cochlear outer hair
cells (OHCs) and the consequent changes in endocochlear
potential, leading to increased spontaneous cochlear activity.
This suggestion provides a possible explanation of different
causes behind cochlear tinnitus, including tinnitus induced by
an acute noise exposure (Norena, 2015). Meanwhile, central
tinnitus is mediated by the neuronal activity in the auditory
centers. A good illustration is the chronic tinnitus induced by
a noise trauma in the absence of changes in cochlear activity
following the trauma (Liberman and Dodds, 1984a,b; Heinz
and Young, 2004; Norena, 2015). Although central mechanisms
are important for explaining the generation of tinnitus-related
activity, much of these mechanisms appear to be triggered by
a reduction of cochlear activity. However, damage to cochlear
tissues is not necessary to produce central changes related
to tinnitus, since a conductive hearing loss can also induce
tinnitus (Ayache et al., 2003; Midani et al., 2006; Schaette et al.,
2012).

Based on the above assumptions, Norena (2015) proposed
three distinct subtypes of tinnitus: cochlear tinnitus, peripheral-
dependent central tinnitus, and peripheral-independent central
tinnitus. Cochlear tinnitus refers to a tinnitus generated by
aberrant activity in the inner ear, which is propagated through
the cochlear nerve and the central auditory pathway. This
activity may lead to an auditory perception, depending on the
firing neuronal rates and top-down modulation (Norena and
Farley, 2013; McKenna et al., 2014; Norena, 2015). Peripheral-
dependent central tinnitus refers to a tinnitus associated with
cochlear spontaneous activity, while peripheral independent
central tinnitus refers to a tinnitus that is independent from
cochlear spontaneous activity (Norena, 2011, 2015).

CELLULAR MECHANISMS

Cochlear damage may include loss of OHC electromotility, loss
of synapses between Inner Hair Cells (IHCs) and spiral ganglion
neurons (synaptopathy), damage to the stereociliar bundle, death
of OHCs or IHCs, or rupture of the basilar membrane. All of
these processes can be seen in rodents by means of histology, but
are not easily measurable in humans due to difficulty in access to
tissue. These mechanisms lead to a decrease in neuronal output
from the cochlea to the brain and they could account for the
potential generation of compensation mechanisms in the brain
(Chen and Fechter, 2003).

POSITION OF THE TECTORIAL
MEMBRANE

Change in the position of the tectorial membrane may be
a pathophysiological trigger for acute tinnitus following an
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intense noise exposure. It is well established that after noise
trauma, the rootlets of stereocilia are altered leading to stiffness
and contributing to acute increase in cochlear spontaneous
activity (Liberman and Dodds, 1984a,b, 1987). The prolonged
depolarization of IHCs can occur through any condition that
changes the relative position of the tectorial membrane. This may
originate after an increased pressure in the scala media, tectorial
membrane detachment, degeneration of OHCs or stereocilia
(LePage, 1989). In some cases, there might exist areas of damaged
OHCs but intact IHCs, and so the tectorial membrane can touch
the IHCs stereocilia, consequently causing their depolarization
(Baguley, 2002).

OUTER HAIR CELLS (OHCs)

Another pathophysiological trigger for acute tinnitus concerns
damage to the stereocilia of OHCs, again often following
an intense noise exposure. High noise levels damage first
the OHCs and then the IHCs (Nicolas-Puel et al., 2006).
The initiation of pathological process starts at the stereocilia
of OHCs, with two fundamental processes damaged by the
noise: intracellular calcium levels and biochemical changes of
their structural proteins. Eggermont suggested that increased
intracellular calcium could be the pathological substrate of
peripheral tinnitus, by increasing the neurotransmitter release of
the cells and subsequent activity of afferent fibers (Eggermont,
2000).

INNER HAIR CELLS (IHCs) AND THE
COCHLEAR NMDA RECEPTORS

The N-methyl-D-aspartate (NMDA) receptor has been found to
play an essential role in noise-induced tinnitus. In a behavioral
animal model, pharmacological interventions that antagonize the
NMDA receptors prevent tinnitus (Guitton et al., 2003). These
NMDA receptors appear to predominate on the modiolar side
of IHCs (Pujol et al., 1992), with a higher percentage of lateral
olivocochlear efferent fibers that seem to terminate on low-SR
high threshold fibers (Liberman, 1980). It seems that an increase
in glutamate levels derived from IHCs, activates the NMDA
receptors that release excessive Ca2+ in the dendrites of the spiral
ganglion neurons. This causes an over-excitation of NMDA-
receptors and consequently a calcium influx during the damage.
This process may contribute to hearing loss, neural presbycusis
and tinnitus via the aberrant excitation of the auditory nerve
(Sanchez et al., 2015). Underlying the over-excitation, there is
an increase in adenosine triphosphate (ATP) which consequently
increases the reactive oxygen species in the synapses between
IHCs and spiral ganglion neurons (Sahley et al., 2013). An
increase in levels of Ca2+ in the NMDA receptors can trigger
a successive metabolic events such as production of reactive
oxygen or hydrogen species or even death of spiral ganglion
neurons (Parsons and Raymond, 2014). It is likely that the
blockade of NMDA-receptor activation prevents the loss of
IHC ribbons after noise damage (Bing et al., 2015). Therefore,

concerning the lower auditory pathway, the NMDA receptor
plays a role in numerous functions such as neuronal plasticity,
synapse modifications, temporal processing, and onset of disease
(Sanchez et al., 2015).

INCREASE OF THE ENDOCOCHLEAR
POTENTIAL

The endocochlear potential is a prerequisite for auditory signal
transduction. It is maintained by keeping high concentrations of
K+ in the endolymph and is strongly associated with cochlear
spontaneous activity (Sewell, 1984; Mittal et al., 2017). An
increase in the endocochlear potential can depolarize IHCs,
which triggers a sequence of events that includes opening the
voltage-gated Ca2+ channels, an intracellular influx of Ca2+

and fusion of the synaptic ribbon to plasmatic membrane.
This culminates in glutamate release and depolarization
of cochlear fibers (Hudspeth, 1985; Moser et al., 2006).
OHCs can regulate the endocochlear potential, through their
mechano-electrical transduction channels. In other words,
the opening of these channels depends on stereociliar bundle
deflection. This process seems to be induced by acute noise
trauma that reduces the opening probability of these channels,
consequently increasing the endocochlear potential (Patuzzi,
2002).

Biochemical changes seem to be most relevant to the
acute phase of tinnitus. The heat-shock protein group (stress
proteins), interacts with structural proteins of hair cells, giving
them support and protecting them from further damage. Any
disturbance that causes a deficient heat-shock protein system
response can lead to incurring tinnitus to the person exposed to
loud noise (Dechesne et al., 1992).

COCHLEAR SYNAPTOPATHY

Although the majority of people with tinnitus have a clinically
measurable hearing loss, a good number do not. According
to different series more than 60% of people with normal
hearing (based on tonal audiometry) have tinnitus (Heller
and Bergman, 1953; Tucker et al., 2005). Animal data suggest
that the permanent loss of synapses between the IHCs and
the cochlear nerve fibers occurs because external factors such
as noise exposure or aging (Kujawa and Liberman, 2009;
Sergeyenko et al., 2013; Kujawa and Liberman, 2015). This
condition is popularly called “hidden hearing loss” (HHL)
(Schaette and McAlpine, 2011), since it is not possible to
diagnose through conventional tonal audiometry using quiet
sounds. In the ear, noise overexposure causes a rapid excessive
release of the neurotransmitter glutamate from electron-dense
ribbon synapses in the IHC. This excitotoxic insult induces
the swelling of the dendrites, which causes an important level
of hearing loss at a particular frequency due to a partial
disconnection among the IHCs and the afferent neurons (Pujol
et al., 1993). The ear possesses a remarkable healing capacity
that allows these neuronal terminals to regrow toward the
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sensory cells and reestablish functional connections restoring
hearing (Pujol and Puel, 1999), as people experience after noise
exposure (e.g., concerts) and have their hearing thresholds
recovering and their tinnitus disappearing after some time.
However, in some cases, even if the terminals have grown
back, the reconnection can be incomplete and synaptic coupling
remains incomplete due to either a decrease in the number
of ribbons (Ruttiger et al., 2013) or a decrease in the
number of paired pre-and post-synaptic entities (Kujawa and
Liberman, 2009). The damage seems to selectively affect low
spontaneous rate of the cochlear neurons responsible for
high thresholds and coding moderate-to-high sound intensities
(Furman et al., 2013). Recently, Wan and Corfas (2017)
reported another mechanism underlying HHL. The authors
found that transient Schwann cells loss results in permanent
disruption of the cochlear heminodal and consequently in
permanent auditory deficits characteristic of HHL. Interestingly,
this auditory deficits is not related to the synaptic loss, but
with the affection of the first heminodes at the auditory nerve
peripheral terminal. This study provides new insights on the
mechanisms, causes and long term consequences underlying
HHL.

The extent to which cochlear synaptopathy contributes to
tinnitus in animals and in humans is still uncertain. Schaette and
McAlpine (2011) first demonstrated the reduced amplitude of
wave 1 in the auditory brainstem response (ABR) in the subjects
with tinnitus but with normal audiogram, when compared
to controls. An appealing interpretation of these findings is
that they are evidence for reduced cochlear nerve output as a
direct result of cochlear synaptopathy. However, there are some
important caveats to data interpretation. First, the match between
tinnitus and control groups was not 100% regarding the high
frequency sensitivity, yet wave 1 ABR amplitude is known to be
predominantly raised by responses to high-frequency tones (Don
and Eggermont, 1978). Second, this finding has not withstood
replication (Gilles et al., 2016; Guest et al., 2017). Methodological
differences might underlie the lack of replication, but another
plausible explanation is that tinnitus in young audiometrically
normal adults is not related to cochlear synaptopathy but may
reflect other effects of the exposure to noise (Guest et al.,
2017). Clear directions for further research are to improve
the sensitivity of non-invasive electrophysiological measures of
cochlear synaptopathy in humans, and to examine the broader
neurophysiological impacts of noise exposure.

MECHANISMS INVOLVED IN
MAINTENANCE OF TINNITUS

The link between hearing loss and tinnitus is well substantiated.
For example, patients with conductive hearing loss (e.g.,
otosclerosis) frequently report having tinnitus and these
symptoms are usually abolished after surgery (Gersdorff et al.,
2000; Ayache et al., 2003; Sobrinho et al., 2004). Ear plugging
is a way to induce a temporary hearing loss in otherwise
normally hearing people. Participants who wear a silicone earplug
for 7 days develop tinnitus symptoms, which disappear after

removing the earplug (Schaette et al., 2012). Implantable and
non-implantable hearing devices improve tinnitus in 50% of
treated patients and eliminating it in 20% of cases (Schaette,
2013), likely by partially restoring cochlear output. More
specifically, published data confirm a strong association between
high-pitched tinnitus and high-frequency SNHL, suggesting
again that hearing loss is a main cause of tinnitus (Norena
et al., 2002; Martines et al., 2010a,b,c; Sereda et al., 2011).
Many theories suggest that the underlying cause of tinnitus may
be associated with damage to the sensory cochlear epithelium
(Henry et al., 2005), and if acute then this can be assessed in
the patient by asking about the temporal association between
noise exposure events, abrupt changes in hearing and tinnitus
onset or exacerbation. In a review, Zhao et al. (2016) found that
specific insults to the peripheral auditory system (e.g., cochlear
ablation, selective IHC or OHC loss, and mixed or incomplete
IHC and OHC injuries) can all reduce cochlear output. The edge
theory of tinnitus proposes having cochlear disturbance inducing
tinnitus and caused by the shift of OHCs in the organ of Corti
from the apical side toward the lesion in a high-frequency basal
side (Nuttal et al., 2004). In almost all types of peripheral insults,
OHCs are more damaged than IHCs. Combined with the edge
theory, this provides the foundation of the Discordant Theory,
which predicts that tinnitus is associated with a disinhibition of
neurons in the dorsal cochlear nucleus (DCN), due for example to
DCN receiving excitation from IHC and not from damaged OHC
and consequently leading to increasing spontaneous activity in
the central auditory system (Levine, 1999; Jastreboff and Hazell,
2004).

Reduced cochlear output through hearing loss likely triggers
a cascade of neuromodulatory events ultimately causing
hyperactivity in central auditory circuits (central gain). This
process has been proposed to contribute to tinnitus. It seems to
be associated with neuronal hyperactivity and could likely be
a common consequence of various kinds of cochlear damage
(Parra and Pearlmutter, 2007). It could also explain individual
cases of tinnitus without hearing loss, since there can be up to
30% damage to the OHCs before hearing loss is detectable using
pure tone audiometry (Chen and Fechter, 2003).

Hearing loss decreases the input to the central auditory
system. This may in turn modify the gain of central neurons,
resulting in increased spontaneous activity. The functional
aberrations resulting from either model (tonotopic over-
representation, enhanced synchronicity, or elevated spontaneous
firing rates) may underlie the induction of tinnitus (Adjamian
et al., 2014; see Figure 2).

The sensation of pain and phantom limb perception is often
used as an analogy to the pathophysiology of tinnitus. Damage
in the cochlea (e.g., hair cell loss or synaptic damages) leads
to a frequency-specific decrease in output from the cochlear
nerve. An upregulation of activity in the central auditory pathway
is a compensatory effort to counteract the lack of signals in
the particular frequency area. This effort increases the gain,
falsely leading to the perception of a non-existing sound and
possibly accompanying hyperacusis (Auerbach et al., 2014). In
addition to the auditory pathway, tinnitus shares non-auditory
networks, similar to these know in chronic pain (perception,
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FIGURE 2 | Potential mechanisms involved in tinnitus pathophysiology. GPNs, global perceptual networks; vl/vmPFC, ventrolateral/ventromedial prefrontal cortex;
dACC, dorsal anterior cingulate cortex; Prec., precuneus; IPC, inferior parietal cortex; PHC, parahippocampal cortex; HG, Heschl’s gyrus; STG, superior temporal
gyrus; SG/G/IG, supragranular/granular/infragranular neuronal layers; BF, basal forebrain; OFM, orofacial movements; S, specific (lemniscal) auditory thalamus; TRN,
thalamic reticular nucleus; NS, non-specific auditory thalamus; DCN, dorsal cochlear nucleus; IC, inferior colliculus.

salience, distress, and memory). Such networks, may maintain, in
absence of the initial “tinnitus-initiator” (De Ridder et al., 2011a,
2014; Rauschecker et al., 2015). De Ridder and others consider
phantom pain and phantom sound to share basic underlying
mechanisms. The model assumes sensory deafferentiation
resulting in cortical activity within the primary and secondary

auditory cortices. This activity becomes a conscious percept
upon connection to a larger brain networks located in the
frontal and parietal areas of cortex, such as “self-awareness”
and “salience network.” The latter network intersects with the
central autonomic control system and affects the limbic-auditory
and somatosensory interaction indispensable for consciously
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FIGURE 3 | Some extra auditory regions involved in tinnitus pathophysiology.

maintaining the phantom perception (see Figures 2, 3). This
perception may associate with distress, simultaneously co-
activating non-specific distress networks located in the anterior
cingulate cortex, anterior insula and amygdala. At the same
time, it is proposed that memory mechanisms may reinforce and
maintain the awareness of the phantom percept (De Ridder et al.,
2011a).

CENTRAL MECHANISMS

The compensation mechanism occurring in the central nervous
system during tinnitus is called “homeostatic plasticity.” This
is a phenomenon whereby auditory neurons in the brain
adapt their synaptic connections in attempt to maintain a
neuronal network similar to the one before the peripheral
damage occurred. Neuronal correlates of tinnitus have been
proposed as neuronal hyperactivity in the posteroventral cochlear
nucleus (PVCN), the inferior colliculus (IC), DCN, and the
paraflocculus lobe of the cerebellum (PFL) (Cacace et al., 2014).
Specifically, it has been suggested the presence of elevated
responses to sound in subcortical areas, in particular in the
IC, as a common effect among individuals with tinnitus
and normal thresholds (Melcher et al., 2009). A large body
of data supports the view that DCN is the induction site
of tinnitus, which then spreads to higher areas (Brozoski
et al., 2012; Dehmel et al., 2012; Wu et al., 2015). Animal
studies show an increased activity in fusiform neurons of
the dorsal cochlear nucleus during noise-induced tinnitus
(Brozoski et al., 2002). Being the site of convergence of
different somatosensory pathways (trigeminal nucleus and dorsal
somatosensory pathway), cholinergic and serotonergic systems,

it has been proposed that the DCN is an important site of
maladaptive auditory-somatosensory plasticity (Wu et al., 2015).
Supporting the importance of the DCN in tinnitus generation
is the identification of a role of the Kv7.2/3 channel, which
shows decreased activity in the DCN after noise-induced tinnitus.
However, a specific drug compound that modulates Kv channels
(Kv3.1)1 has been found not to alleviate subjective tinnitus in
humans2.

Another hypothesis views tinnitus as a product of neuronal
hyperactivity in particular regions of the central auditory system
such as cochlear nucleus, IC and thalamus – see Dong et al.
(2010), Middleton et al. (2011), Vogler et al. (2011), Manzoor
et al. (2013) and Kalappa et al. (2014). There is no consensus
about cannabinoids, which activate the CB1 receptors and which
may have an effect on exacerbation or worsening tinnitus.
However, the presence of CB1 receptors in the DCN was
suggested to increase rather than to inhibit tinnitus (Smith and
Zheng, 2016).

There are two main, partially compatible theories on the role
of medial olivocochlear bundle in tinnitus onset. The first theory
emphasizes the role of decreased neural efferent input to the
cochlear amplifier which, in this way, increases its spontaneous
activity and induces a chain reaction of neuroplastic changes in
the afferent auditory relays up to the auditory cortex. The second
theory focuses on the brainstem as the place of integration of
efferent neuronal drive and afferent tinnitus-related stimuli (Riga
et al., 2015). Considering that some studies could not confirm the
role of medial olivocochlear bundle in tinnitus, this finding is still
controversial (Riga et al., 2015).

1https://clinicaltrials.gov/ct2/show/NCT02315508?term=QUIET-1&rank=1
2https://autifony.com/wp-content/uploads/2017/10/AUTIFONY-CLARITY-1-
RESULTS-08-Aug-2016-FINAL.pdf
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The auditory cortex also shows evidence of frequency-
dependent reorganization, although in people with tinnitus but
without measurable hearing loss, tonotopic map reorganization
is not essential (Langers et al., 2012). Oscillatory activity (periodic
fluctuations in electromagnetic field/potential as a result of
synchronized firing of large neuronal ensembles) is one method
for measuring neural synchrony in the human brain. The power
of the oscillatory activity can be separated into different frequency
bands, namely: delta (1–4 Hz), theta (5–7 Hz), alpha (8–12 Hz),
beta (13–20 Hz), and gamma (>30 Hz). The premise is that these
reflect different functional processes.

Comparing cortical hubs that involve multiple brain regions
in people with tinnitus and in the healthy controls through
electrophysiological measurement demonstrates fundamental
differences between the groups (Muhlnickel et al., 1998; Schlee
et al., 2009). Mapping the cortical hubs has demonstrated
essential differences in the global networks, mainly hyperactivity
in the gamma frequency range within the temporal cortex
associated with tinnitus (Schlee et al., 2009). According to this
view, the global network may influence the auditory cortex
in a top-down process and regulate the degree of tinnitus-
related distress. Those alterations seem to be associated with
conscious tinnitus perception (Schlee et al., 2008). In particular,
the activity and connectivity patterns detected in the posterior
cingulate cortex and the precuneus region, associate with a
distressing tinnitus (Maudoux et al., 2012). When cochlear
damage causes a reduction of electric signals at a given frequency,
neurons within the primary auditory cortex responsive to
these frequencies start responding to adjacent frequencies, as
exemplified by the broadening of the frequency tuning in this
region (Engineer et al., 2011; Yang et al., 2011). Aberrant
neuronal oscillations have also been observed in the alpha
and gamma frequency range within the frontal cortex (Muller
et al., 2013). These results are in agreement with the work
of Weisz et al. (2005), who were the first group to use
the electroencephalography (EEG) oscillation to study tinnitus.
That first study revealed the dissimilarities of power spectra
between a group of people with tinnitus and hearing loss
and a matched group of control subjects. Over the years,
other results provided mixed support for this finding (Weisz
et al., 2007; Moazami-Goudarzi et al., 2010; De Ridder et al.,
2011b; Adamchic et al., 2012, 2014; Adjamian et al., 2012),
and there is not yet any clear agreement in the field. For
example, recently, Pierzycki et al. (2016) found no evidence
that resting state whole-scalp EEG reflects any tinnitus-related
percept or symptom severity and so should not be assumed
as a biomarker for tinnitus. Moreover, the correlation between
perception of tinnitus and the frequency band power in EEG
and magnetoencephalography (MEG) remains unclear. Using
acoustic stimulation to test residual inhibition (RI) when
tinnitus is reduced, both delta/theta and gamma are suppressed
(positive correlations); when tinnitus is louder – residual
excitation (or Rebound Effect) (RE) delta/theta is unchanged
and gamma is reduced (negative correlation) (Sedley et al.,
2012).

Overall, it is now rather well established that most of the
nuclei in the auditory pathway can be affected during tinnitus.

These compensatory mechanisms seem to be related to the
loss of GABAergic inhibition and decreased activity of specific
potassium channels (Kv7.2/3) (Yang et al., 2011; Li et al., 2013).
However, whether the changes seen in central gain are directly
related to tinnitus or instead more related to hyperacusis is still a
matter of discussion (Knipper et al., 2013; Auerbach et al., 2014).

NON-AUDITORY NEURONAL
NETWORKS INVOLVED IN TINNITUS

Recent work in rodents (with fMRI) and humans
(intracranial recordings) strongly support the involvement
of emotional/cognitive relays of the brain such as temporal,
parietal, sensorimotor, and limbic cortex in the pathophysiology
of tinnitus (Frank et al., 2011; Vanneste and De Ridder, 2011).
Neuronal emotional networks which influence peripheral and
central circuits during tinnitus, involve most likely central
regions implicated in a normal emotional behavior and in
mood altered disorders. Such regions comprise the medial
prefrontal cortex and ventromedial parts of the basal ganglia
(also known as limbic frontostriatal network) (Lowry et al.,
2004; Cheung and Larson, 2010). In addition, they include
dorsal prefrontal regions, the medial and caudolateral orbital
cortex (medial prefrontal network), insula, posterior thalamus,
anterior cingulate, posterior cingulate, amygdala (Shulman, 1995;
Mirz et al., 2000), parahippocampus, hippocampus (Lockwood
et al., 1998; Landgrebe et al., 2009), and the subcallosal region
(Muhlau et al., 2006; Leaver et al., 2011) including the nucleus
accumbens (Jastreboff, 1990; Drevets et al., 2008). The precise
functional role of the numerous extra-auditory structures
is difficult to establish because some of them participate in
the generation or in the chronification of tinnitus, some in
psychological reactions to the tinnitus, some are associated
with hearing loss and others with hyperacusis (Leaver et al.,
2016a,b; see Figures 2, 3). It is highly plausible that there is no
coherent model for the involvement of extra-auditory structures
in chronic tinnitus but rather that the patterns are highly
dependent on the individual tinnitus profile. A tight interaction
between limbic non-auditory and auditory pathways and the
presence of both anatomical and functional abnormalities
has been confirmed by different neuroimaging techniques
(stimulus evoked BOLD fMRI, diffusion MRI, resting-state
fMRI and PET) (Leaver et al., 2016b). On the other hand,
other groups have not been able to determine significant
differences in the connectivity of auditory network between
control and tinnitus groups (Davies et al., 2014). One of the
important observations is that the involvement of the extra-
auditory brain areas traces the evolution of acute tinnitus to
its chronic form (Leaver et al., 2016b). Because a relationship
between the psychoacoustic tinnitus characteristic, the degree
of tinnitus distress and underlying neural patterns of activity
is not scientifically confirmed, there is an urgent need for
systematic studies to address these questions further (Leaver
et al., 2016b).

The frontostratial circuits appear to have a central role in
the development and maintenance of both tinnitus and chronic
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pain (Rauschecker et al., 2015). Two structures are essential
in this process: the ventromedial prefrontal cortex and the
nucleus accumbens. Both of them play a role in evaluating the
relevance and emotional significance of sensory stimuli and in
managing of the information flow via descending pathways.
The damage in frontostratial areas could explain tinnitus
pathophysiology and provide new insights for the therapeutic
design or prevention of tinnitus and chronic pain (Rauschecker
et al., 2015). The tinnitus percept seems to be mediated by
a somatotopic map and the corresponding somatic memory.
Furthermore, somatic memories depend on somatotopic maps
and their active use in the specialized cortical areas (Eggermont
and Kral, 2016). The genetically defined somatic memories and
the somatotopic maps are shaped by experience during early
development, and are independent of auditory input (Bonham
et al., 2004; Pienkowski and Harrison, 2005; Eggermont and
Moore, 2012). Corroborating this observation, it was noted that
the individuals born without limb(s) are free of phantom limb
and phantom limb pain phenomena. This observations reinforces
the relationship between tinnitus and the phantom limb that
occurs as references to sensory surface maps (Eggermont and
Kral, 2016).

The medial geniculate body (MGB) within the thalamus
has been suggested to gate the perception of sound on its
way to the auditory cortex and to limbic system (Caspary
and Llano, 2017). The key component in the pathology of the
tinnitus network strongly implicates MGB and its ascending
inputs from the brainstem, thalamic reticular nucleus and,
limbic structures, as well as descending inputs from the
auditory and non-auditory cortices (Shinonaga et al., 1994;
Bajo et al., 1995; Lee and Winer, 2008a,b,c; Rauschecker et al.,
2010; Leaver et al., 2011). In addition, a functional model
of tinnitus suggests that in the affected individuals, tinnitus-
related distress correlates with abnormal functions in limbic
and thalamocortical circuits (Winer et al., 1999; Rauschecker
et al., 2010; Leaver et al., 2011). Concerning the role of MGB,
opposing hypotheses offered GABA-related explanations. The
first one assumes tinnitus-related up regulation of GABAergic
inhibition whereas the second one assumes tinnitus-related
suppression of GABAergic inhibition. GABA mediates fast
synaptic inhibition and a persistent tonic inhibition (Caspary
and Llano, 2017), indicative of the increase in GABA being
alleged to increase bursting, thus, increasing thalamocortical
activation.

One study has evaluated the cortical benzodiazepine receptor
distribution in patients with tinnitus, using venous blood samples
after radiolabeling with 123I-iomazenil, radiochemical purity,
single-photon emission computed tomography (SPECT) and
MRI. A comparison of participants with severe chronic tinnitus
and controls revealed a significant trend toward bilaterally
reduced benzodiazepine receptor density in the frontal lobes
(p< 0.001) and a reduction in the cerebellum (p = 0.045) (Daftary
et al., 2004).

An MRI study, involving people with hearing loss affected
or not by tinnitus, demonstrated increased gray matter in the
temporal and limbic areas, and decreased gray matter in frontal
and occipital areas when compared to a control group. In

detail, analyses of all cortical areas of the tinnitus participants
demonstrated an increase of gray matter in cerebellum and
subcortical auditory nuclei with the most significant effect in
the left primary auditory cortex when compared to controls
and those with hearing loss only. On the other hand, people
with hearing loss had decreased gray matter in frontal areas and
increases in limbic areas, compared to controls. These findings
imply a particular role for the left primary auditory cortex and
other non-auditory brain structures in tinnitus development
(Boyen et al., 2013). Another study, with a similar design,
using diffusion tensor imaging and voxel-based morphometry
(VBM), found both gray and white matter changes in the
auditory cortex of people with hearing loss but without tinnitus,
compared to people with tinnitus and controls. Thus, the authors
concluded that hearing loss rather than tinnitus was associated
with the observed changes (Husain et al., 2011). A large-
scale study examining VBM and surface-based morphometry
changes in brain anatomy from 128 participants with tinnitus
and hearing loss, tinnitus with clinically normal hearing, and
non-tinnitus controls with clinically normal hearing managed to
replicate some of the morphological differences that had been
reported in previous studies, but found other differences that
contradicted previous results (Allan et al., 2016). The variability
of morphometry results obtained by different teams and by
different analysis methods is confusing. It perhaps indicates
the need for greater standardization in study design, and in
analysis techniques, as well as more precise subtyping of the
condition.

THEORIES AND MODELS OF TINNITUS
PATHOPHYSIOLOGY

A recent report supports the notion that tinnitus is not
associated with increased metabolic activity in localized auditory
regions (Geven et al., 2014), but rather with neural synchrony
between different cortical networks (Norena and Farley, 2013;
Sedley et al., 2015), including the thalamus (Eggermont, 2013;
Husain and Schmidt, 2014). A steep audiometric edge between
regions of normal and impaired hearing may be sufficient to
disrupt the normal pattern of neural synchrony in tonotopically
organized regions of the central auditory system. De Ridder
et al. (2015) have observed that oscillatory activity in the
gamma frequency band usually appears bilaterally in tinnitus
patients and they have proposed this to be the substrate of
tinnitus. However, the evidence only partially supports this
model because there are a number of methodological issues
that complicate the attribution of findings to the tinnitus versus
the hearing loss (Adjamian et al., 2012). With respect to this
edge region, some studies have found tinnitus-related changes
in the magnitude of the oscillatory power in delta/theta, alpha
and in gamma frequency bands (Eggermont and Tass, 2015).
These authors observed tinnitus-related low-frequency delta
oscillation that are hypothesized to originate from the thalamus
low frequency bursting (Sedley et al., 2015). The delta activity
extended beyond auditory cortex to the temporal, parietal,
sensorimotor, and limbic cortices. The diffuse distribution of
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activity was too extensive to be consistent with the putative
“edge effect” theory. Rather, delta frequency band activity
has been found to interact with alpha, beta, and gamma
frequency band activities in specialized brain regions such as
parahippocampal and inferior parietal regions. And this has
been proposed as a neurophysiological correlate of the network-
based interactions between tinnitus perception and memory
processes. In line with further development of the synchronicity
model, Schlee et al. (2014) investigated the correlation between
chronic tinnitus and cortical activity in the alpha frequency
range. The authors confirmed the reduction of alpha power and
auditory alpha variability in the tinnitus brain. According to their
conclusions, changes in alpha power reflect the enhanced and
reduced excitability of engaged neuronal networks (Schlee et al.,
2014).

Overall, these results suggest a role for neural synchrony
both for establishing pathological activity within the auditory
cortex and for recruiting extra-auditory networks in tinnitus.
However, the precise details of these mechanisms warrants
further attention.

Recently, Sedley et al. (2016) proposed another framework to
explain tinnitus pathophysiology from the ear to the cortex. That
model assumes a so called predictive coding model, in which
spontaneous activity of the auditory subcortex involves “tinnitus
precursor,” which is normally ignored against the prevailing
percept of “silence” (see Figure 2). This model explains the simple
and unitary content of tinnitus. The sensory precision tinnitus
model comprises causes of spontaneous sensory input and their
graded processing in a predictive coding framework.

The broader framework is equally applicable to other
conditions similar to tinnitus, such as chronic nociceptive pain.
Nevertheless, some types of pain such as central post-stroke pain,
cannot be explained by this framework (Klit et al., 2009).

There are a number of psychological models of tinnitus. The
neurophysiological model (Jastreboff, 1990) proposes that fear
is a conditioned responses that is responsible for generating
a bothersome tinnitus (Jastreboff and Hazell, 1993). The
neurophysiological model draws on behavioral psychology and
has the following stages: (1) generation of the tinnitus-initiating
signal in the peripheric auditory system; (2) detection of the
neuronal activity induced by tinnitus; (3) perceptional evaluation
of tinnitus. Husain proposed a neuropsychological model that
includes the regions and connections involved in mediating
chronic tinnitus (Husain, 2016). The brain regions identified
incorporate the neuropsychological (Jastreboff, 1990; Kaltenbach,
2006; Eggermont and Roberts, 2012) and psychological (e.g.,
Sweetow, 1986; Hallam et al., 1988) components of tinnitus. This
model differs from those already existing in that it uses MRI
evidence to explain habituation to tinnitus. The model predicts
a key role of the amygdala in a severe, non-habituated tinnitus.
The frontal cortex becomes more engaged in subjects with
mild, habituated tinnitus, and this may facilitate bypassing the
emotional processing from the amygdala and the use of alternate
limbic pathways involving the insula and parahippocampus gyrus
(Husain, 2016).

Tinnitus models that are influenced by the cognitive
psychology movement include the cognitive behavioral model

(McKenna et al., 2014) and fear-avoidance model (Cima, 2018).
Both of these seek to explain the causes and chronicity of tinnitus-
related distress from a cognitive perspective, and both offer an
integrative approach that could shed insights on higher-order
pathological processes of tinnitus-related distress.

CONCLUSION

Significant advances in understanding the molecular, cellular,
and system-level mechanisms of tinnitus have been made
in the last decade. Although tinnitus may be induced by a
peripheral insult, the tinnitus generators are found mainly
centrally, in and around the primary auditory cortex as well as
in many non-auditory higher-order processing centers. Reduced
input to the auditory nerve shifts the balance of central
excitation and inhibition, and this may lead to hyperactivity,
increased bursting activity and increased synchrony. This view
is consistent with the multifactorial nature of tinnitus, which
involves auditory, attentional, memory, and emotional systems
(Kaltenbach, 2011).

The current view on tinnitus therefore is that it is a symptom
encompassing a distributed network across the peripheral and
central auditory system. Many studies would indicate that the
restoration of cochlear output to the brain should also abolish
tinnitus. Preliminary evidence reporting benefit from hearing
aids and cochlear implants for tinnitus support this view.

Recent novel findings may open perspectives for new
therapeutic approaches on molecular level (e.g., intracochlear
application of NMDA antagonists, modulation of microtubule
associated proteins molecular pathway, GABA modulation); on
a systemic level (behavioral strategies, transcranial magnetic
stimulation); “hybrid” solutions that would involve synergistic
action of pharmacotherapy and Vagal Nerve Stimulation (Bojic
et al., 2017) and lastly the intracochlear pharmacological
interventions supported by a non-specific, mostly anxiolytic
pharmacotherapy (Guitton, 2012). Factors that determine the
phase of tinnitus pathophysiological evolution (initiation or
maintenance), the level (molecular or systemic), and the
mechanism (neurotransmission or neuromodulation) (Guitton,
2012) will in the future determine the therapeutic approach.
The therapy of tinnitus will have to be strictly individualized,
with an assessment protocol that would define tinnitus in the
sense of the phase (chronicity), level of lesion (peripheral or
central) and whenever possible – the mechanism of tinnitus
maintenance. This approach in tinnitus evaluation will engage
specific multidisciplinary teams whose collaboration will have
as a center the subjective wellness and improvement of tinnitus
patients.
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