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Nuclear quantum state engineering in ion channeling regime
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Abstract. A key challenge in quantum state engineering is to identify coherent quantum mechanical
systems that can be precisely manipulated and scaled, but at the same time to allow decoupling from
unwanted interactions. Such systems, once realized, would represent an efficient tool for
characterization of quantum behavior reflected in the properties of matter with prerequisites for
meeting dissipation constraints imposed in the nuclear physics as well in the quantum information
theory. Using the pure”Si nanocrystal system we present a novel high resolution method for
initialization of single electron polarized spin interaction and control of nuclear spin qubits. The
presented study fuses field of particle channeling in MeV energy regime with quantum state
engineering utilized via entanglement as an essential quantum property. Its aim is to bring focus on
new theoretical proposals testing the quantum mechanical models for systems producible at particle
accelerator facilities.

1 Introduction

Discovering of powerful quantum algorithms (Shor [1]; Grover [2]) has initialized development of
quantum information concepts and facilitated novel pathways in theory and application of complex
systems including the quest for efficient resources of quantum entanglement as a specific correlation,
establishing new demands for ultimate control and manipulation over subatomic systems. Following
these strategies, in this work we demonstrate theoretically quantum control of subatomic particle
states using a particular axial mode of channeling founded by Robinson and Oen [3] which allows
high resolution localization of subatomic particles induced by enhancement of confining potential
inside ultra thin crystal targets [4]. This effect is established when the particle trajectory is confined to
one axial channel during its transmission through a very thin perfect crystalline targets (due to small
percentage of energy losses) for very small angles of incidence and negligible beam divergence.

It is considered that the nuclei of silicone atoms, which form atomic strings defining the crystal
channel, represent the nuclear spin qubits. Thus, the insertion of a foreign atom in desired location
inside crystal target (whose thickness corresponds to one atomic layer) can be performed in order to
establish ancillary qubit. Our goal is to minimize interaction of quantum system with environment and
to prevent decay of information (to reduce amount of decoherence). In order to achieve that
computation must be completed before the information has significantly decayed.
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In order to address issues of collective effects and quantum correlations resulting from the interplay
between resonance and specific coherent effects in channeling mode, we demonstrate a simple
simulation model based on the quantum game protocol [5] that includes and explain the quantitative
feedback relation of the nuclear qubit quantum resonance states, which are achieved vs control
information states coming from sharply collimated particle beam.

In the next section we start from the Hamiltonian of the Lindblad form where the master equation is
applicable to the quantum two player game, as
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where H denotes the system Hamiltonian, L, are the Lindblad operators, representing the coherence

detriment in the system and o is the quantum state of the system. The system dynamics is expressed

using the concepts of quantum systems control. Moreover, we implement this approach to the case in
which the system is governed by an internal Hamiltonian that corresponds to anisotropic hyperfine
interaction which occurs during the transmission channeling mode [6].

2 Analytical and numerical protocol

Block diagonal system Hamiltonian which is incorporated in the above Linbland equation is:
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where S and I refer to components of electron and spin operators, @, =@, —®, Y, and @,

associate electron and nuclear frequencies, respectively, and @, 5 are resonance transition

frequencies induced by the channeled particle beam. The last term denotes the anisotropic hyperfine

. . . a7 . . . . _ 2 2
interaction: 4,5/, + A4_S.1 , where the anisotropic hyperfine coupling tensor is 4, = /4. + 4, .

As a next step, we consider a preparation device which can produce a quantum system considering
inputs states: |00> , |01> , |10> , |1 1) . Using a 2 bit SWAP operation (quantum gate):

SWAP =

oS O O =
S = O O
oS O = O
—_ o O O

the four inputs states are mapped, respectively, into: |[01) — [1), [00) — |2}, [10) — [3), |11) —
|4> state. Consequently, the SWAP operation is used in this initial stage to describe polarization

transfer from the channeled beam particle states to electron-nuclear spin subsystem in silicone target:

U,, =U, SWAPU,

(O EiL,+0,E41,)

U,=e ,
where E: are the polarization operators for electron spin, and 6, and 6, are the corresponding

quantization axis angles.
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Unitary transformation is applied over individual qubits by selective pulses with specific rotation
angle equaled to corresponding percentages (0-15%) of the critical angle for axial channeling [6, 7],
see figure 1. Thickness of the silicone target is one atomic layer. Channeled beam sequence, for the
spin qubits in the x-y direction of the rotation frame, initializes unitary transformation coinciding with
expression for Pauli matrices as:

“

Figure 1. Scheme of the trajectory executed by the nuclear spin initially oriented along the z axis when the
channeled beam sequence is applied; the desired rotation is implemented by switching the electron spin

transition frequencies @, (i =1,...,4) Eq. (13), between electron spin manifolds:
E=1/21+S., E° =1/2I-S_. Right: corresponding trajectories executed via channeled particle
beam under specified condition of the critical angle for channeling [6, 7], for ¢ <15%y/, .

After applying the entangling operation:

00) = (~1)"*7 (j00)+[11)) /2+(~1)""*7 (J01) +]10)) /2, Q)

T (S:)

PuD

and using the operator D =U(x,0) = |0> <1| - | 1) (O
coupled as following:

, the set of electron-nuclear subsystems becomes

(6)

where:
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1) =|T &) =|T) ®(sing, | 1) +cos6,|)),

2)=[T e} =|1)®(cos 6, | T)-sine, 1)), 0
3)=¥ 8) =|¥) ®(cos 0, | 1) -sing, 1)),

[ = ) =[ V) @(sin,[T)+cos [4)): (|T)=0).[4)=I1).

In the former Eq. (7): «,, o, B, B, are the mixing coefficients of the resonance transition
frequencies induced during the transmission channeling mode over hyperfine coupling tensor
components A_ and 4, :

®)

S operator originates from the interaction Hamiltonian: H, = % 2.B (7)- S, i.e., from the interaction

e

established during the channeling of a particle beam.
Relations (6) and (7) address the anisotropic hyperfine coupling tensor, 4, , via quantization axis

angles, 6, and 6, ,toa z component of the contact hyperfine interaction tensor (see figure 2) as:

6, = Ltan | 4|, ©)
g
2 y @,
4 7[
A . 10
¢9¢=ltam’1 -—t (10)
2 A+
zz 7Z_

The case when &, =0, , see Eq. (6), excludes the electron spin transition frequencies @,;, @,, and
forbids the transitions between the states |1> © |3> and the states |2> © |4>
For the case when &, #0,, activated transition frequencies,w, and w,,, see figure 2 right, are

responsible for establishing quantum correlations in electron spin manifold due the anisotropic
hyperfine couplings between electron and nuclear spin subsystems.

The setting of coupled e-n spin transition frequencies, see figure 2, which are responsible for
establishment of quantum correlation between nuclear spins in electron spin manifold, completely

coincides with the setting of two parameter quantum strategy defined by Eisert et. al. [5], which is
based on the following set of Egs. (11, 12):

={M(9,9):9¢[0,7],4 €[0,/2]}, (11)
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e cos(9/2) isin(9/2) | (12)
isin(9/2) e cos(9/2) |

M(9,¢){

as:

e cos(4/2)  isin(9/2) e cos(4,/2)  isin(9,/2)
o = ol = , (13)

isin($/2) e cos(4/2) isin(4,/2) e cos($,/2)

where the dimension of coupling frequencies: @, ® @, ® @, is 2*x2* and specific coupling

frequencies are denoted as following:

(14)

[4)=111)

le - 1nisotropic
m23 .hyperflr!e O,
interaction allowed
transitions
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Figure 2. Scheme of quantum correlations established between the hyperfine coupled electron (S = %)
and nuclear (I = ) spin in two two-level system. Left: activated quantum transitions
(frequencies) via isotropic hyperfine interaction. Right: activated quantum transitions
(frequencies) via anisotropic hyperfine interaction.

. . 2 . . .
Note: we can achieve maximum entanglement power of ) for the coupling frequencies settings also,

using the matrix, M , which maps the computational basis into the “magic” basis, via procedure:
MUM, where U is purely real unitary matrix:
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M = | M, ){00|+| M, ) (01| +| M, )(10]+| M, )(11]

=| M) 2|+ | My ) (1] +| M, ) (3] +| M, ) (4] (15)

1 i 0 0

10 0 i1

S2lo 0 i
1 - 0 0

Former sequence is achieved applying the gates:

s V.4 T (1 0
s=p|Z|R[Z]| and H=2-R | -Z |, where P,(7)=e" :
(4] (2J an ( 2J where £ (7) = (0 J

cos(a/2) —sin(a/Z)]. o e oxof i ={e—ia/2 0 j
sin(a/Z) COS(O{/2) > dRz( ) p( Z/Z) 0 ei“/z .

Correspondingly, the transition frequencies ,,, @, and @,;, @,, are equal when the phase shift gate

R (a)=exp(-iaY/2)= (

(10
issetto P, (y)=e""* [O J coinciding to the case when |9¢ - ‘9¢| =7r/4.

Conclusion

We have demonstrated analytical and numerical procedure for quantum control of correlations in two
level electron-nuclear Y2 spin system. The obtained values of the transition frequencies are represented
using the strategies of Eisert protocol, based on the quantum two player game. A solution concept of
the established quantum protocols represent a function that captures specific amount of quantum
correlation and associate to each qubit a subset of transition frequencies which are responsible for
quantum control.
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