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The ALICE Collaboration has made the first measurement at the LHC of J/ψ photoproduction in ultra-
peripheral Pb–Pb collisions at

√
sNN = 2.76 TeV. The J/ψ is identified via its dimuon decay in the forward

rapidity region with the muon spectrometer for events where the hadronic activity is required to be
minimal. The analysis is based on an event sample corresponding to an integrated luminosity of about
55 μb−1. The cross section for coherent J/ψ production in the rapidity interval −3.6 < y < −2.6 is
measured to be dσ coh

J/ψ/dy = 1.00±0.18(stat)+0.24
−0.26(syst) mb. The result is compared to theoretical models

for coherent J/ψ production and found to be in good agreement with those models which include nuclear
gluon shadowing.

© 2012 CERN. Published by Elsevier B.V. Open access under CC BY-NC-ND license.
Two-photon and photonuclear interactions at unprecedentedly
high energies can be studied in ultra-peripheral heavy-ion colli-
sions (UPC) at the LHC. In such collisions the nuclei are separated
by impact parameters larger than the sum of their radii and there-
fore hadronic interactions are strongly suppressed. The cross sec-
tions for photon induced reactions remain large because the strong
electromagnetic field of the nucleus enhances the intensity of the
virtual photon flux, which grows as Z 2, where Z is the charge of
the nucleus. The virtuality of the photons is restricted by the nu-
clear form factor to be of the order 1/R ≈ 30 MeV/c (R is the
radius of the nucleus). The physics of ultra-peripheral collisions is
reviewed in [1,2].

Exclusive photoproduction of vector mesons, where a vector
meson but no other particles are produced in the event, is of
particular interest. Exclusive production of J/ψ in photon–proton
interactions, γ + p → J/ψ + p, has been successfully modelled in
perturbative QCD in terms of the exchange of two gluons with
no net-colour transfer [3]. Experimental data on this process from
HERA have been used to constrain the proton gluon-distribution at
low Bjorken-x [4]. Exclusive vector meson production in heavy-ion
interactions is expected to probe the nuclear gluon-distribution [5],
for which there is considerable uncertainty in the low-x region [6].
A J/ψ produced at rapidity y is sensitive to the gluon distribution
at x = (MJ/ψ/

√
sNN )exp(±y) at hard scales Q 2 ≈ M2

J/ψ/4 [7]. The
two-fold ambiguity in x is due to the fact that either nucleus can
serve as photon emitter or photon target. At the forward rapidi-
ties studied here (−3.6 < y < −2.6), the relevant values of x are
≈ 10−2 and ≈ 10−5, respectively.

Exclusive ρ0 [8] and J/ψ [9] production have been studied in
Au–Au collisions at RHIC. The ρ0 is too light to provide a hard
scale, and the J/ψ analysis suffered from very low statistics, so no
conclusions concerning nuclear shadowing were made from these
studies. Exclusive J/ψ production has also been studied by the CDF
Collaboration in proton–antiproton collisions at the Tevatron [10].
The availability of such measurements has led to an increase in in-
terest in ultra-peripheral collisions, stimulating several new model
calculations.

In this Letter, the first LHC results on exclusive photoproduction
of J/ψ vector mesons are presented. J/ψ mesons produced in Pb–
Pb collisions at

√
sNN = 2.76 TeV have been measured at forward

rapidities through their dimuon decay. Exclusive photoproduction
can be either coherent, where the photon couples coherently to all
nucleons, or incoherent, where the photon couples to a single nu-
cleon. Coherent production is characterized by low vector meson
transverse momentum (〈pT〉 � 60 MeV/c) and the target nucleus
normally does not break up. Incoherent production, corresponding
to quasi-elastic scattering off a single nucleon, is characterized by a
somewhat higher transverse momentum (〈pT〉 � 500 MeV/c) and
the target nucleus normally breaks up, but except for single nu-
cleons or nuclear fragments in the very forward region no other
particles are produced. This analysis is focussed on coherently pro-
duced J/ψ mesons. The experimental definition of coherent pro-
duction, which must also take into consideration the finite detector
resolution, is here pT < 0.3 GeV/c. The measured cross section is
compared to model predictions [5,11–14].

The ALICE detector consists of a central barrel placed inside
a large solenoid magnet (B = 0.5 T), covering the pseudorapid-
ity region |η| < 0.9 [15], and a muon spectrometer covering the
range −4.0 < η < −2.5. The spectrometer consists of a ten inter-
action length (λI ) thick absorber filtering the muons, in front of
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five tracking stations containing two planes of cathode pad multi-
wire proportional chambers (MWPC) each, with the third station
placed inside a dipole magnet with a

∫
Bdl = 3 Tm integrated field.

The forward muon spectrometer includes a triggering system, used
to select muon candidates with a transverse momentum larger
than a given programmable threshold. It has four planes of resis-
tive plate chambers (RPC) downstream of a 1.2 m thick iron wall
(7.2 λI ), which absorbs secondary punch-through hadrons from the
front absorber and low momentum muons from π and K weak
decays. This analysis uses the VZERO counters for triggering and
event selection. These consist of two arrays of 32 scintillator tiles
each, covering the range 2.8 < η < 5.1 (VZERO-A, on the opposite
side of the muon arm) and −3.7 < η < −1.7 (VZERO-C) and posi-
tioned at z = 329 cm and z = −87 cm from the interaction point,
respectively. Finally, two sets of hadronic Zero-Degree Calorime-
ters (ZDCs) are located at 116 m on either side of the Interaction
Point. These detect neutrons emitted in the very forward region,
for example neutrons emitted following electromagnetic dissocia-
tion [16].

The analysis presented in this publication is based on a sample
of events collected during the 2011 Pb–Pb run, selected with a spe-
cial trigger (FUPC) set up to select UPC events in which a dimuon
pair is produced within the acceptance of the detector. The inte-
grated luminosity corresponds to about 55 μb−1.

The purpose of the FUPC trigger is to select events containing
two muons from two-photon production (γ γ → μ+μ−) or from
J/ψ decay, and it requires the following event characteristics:

(i) a single muon trigger above a 1 GeV/c pT-threshold;
(ii) at least one hit in the VZERO-C detector since the muon

spectrometer covers most of its pseudorapidity acceptance. In
addition, VZERO-C vetoes the remaining upstream beam-gas
events which could produce a trigger in the muon arm;

(iii) no hits in the VZERO-A detector to reject hadronic collisions.

A total of 3.16 × 106 events were selected by the FUPC trigger.
The offline event selection used in a previous J/ψ analysis [17]

was modified to account for the typical experimental signatures of
ultra-peripheral processes, i.e. only two tracks in the spectrometer
and very low J/ψ transverse momentum. The following selection
criteria were applied (number of remaining events after the selec-
tion):

(i) two reconstructed tracks in the muon arm (432,422 events);
(ii) owing to the multiple scattering in the front absorber, the

DCA (distance between the vertex and the track extrapo-
lated to the vertex transverse plane) distribution of the tracks
coming from the interaction vertex can be described by a
Gaussian function, whose width depends on the absorber
material and is proportional to 1/p, where p is the muon
momentum. The beam induced background does not follow
this trend, and was rejected by applying a cut on the prod-
uct p × DCA, at 6 times the standard deviation of the dis-
persion due to multiple scattering and detector resolution.
The additional dispersion due to the uncertainty on the ver-
tex position (not measurable in UPC events) is negligible in
comparison and does not affect the value of the cut (26,958
events);

(iii) at least one of the muon track candidates were required to
match a trigger track above the 1 GeV/c pT-threshold in the
spectrometer trigger chambers (10,172 events);

(iv) both tracks pseudorapidities within the range −3.7 < η1,2 <

−2.5, to match the VZERO-C acceptance (5100 events);
(v) the tracks exit from the absorber in the range 17.5 cm <

Rabs < 89.5 cm, delimiting the two homogeneous parts of the

Table 1
Summary of the contributions to the systematic uncertainty for
the integrated J/ψ cross section measurement. The error for the
coherent signal extraction includes the systematic error in the fit
of the invariant mass spectrum and the systematic errors on f D

and f I , as described in the text.

Source Value

Theoretical uncertainty in σγγ 20%

Coherent signal extraction +9
−14%

Reconstruction efficiency 6%

RPC trigger efficiency 5%

J/ψ acceptance calculation 3%

Two-photon e+e− background 2%

Branching ratio 1%

Total +24
−26%

absorber covering the angular acceptance of the spectrometer
(Rabs is the radial coordinate of the track at the end of the
front absorber) (5095 events);

(vi) dimuon rapidity to be in the range −3.6 < y < −2.6, which
ensured that the edges of the spectrometer acceptance were
avoided (4919 events);

(vii) two tracks with opposite charges (3209 events);
(viii) only events with a neutron ZDC signal below 6 TeV on each

side were kept. In the present data sample, this cut does not
remove any events with a J/ψ produced with a transverse
momentum below 0.3 GeV/c, but reduces hadronic contami-
nation at higher pT (817 events);

(ix) dimuons to have pT < 0.3 GeV/c and invariant mass 2.8 <

Minv < 3.4 GeV/c2 (122 events);
(x) VZERO offline timing compatible with crossing beams (117

events).

The acceptance and efficiency of J/ψ-reconstruction were calcu-
lated using a large sample of coherent and incoherent J/ψ events
generated by STARLIGHT [18] and folded with the detector Monte
Carlo simulation. STARLIGHT simulates photonuclear and two-
photon interactions at hadron colliders. The simulations for ex-
clusive vector meson production and two-photon interactions are
based on the models in [11] and [19], respectively.

The residual misalignment and the time-dependent conditions
of the tracking and trigger chamber components were taken into
account in these simulations. The trigger chamber efficiencies were
computed from the data and used in the global efficiency calcula-
tion. A separate simulation was performed for each run, in order to
take into account the slight variations in run conditions during the
data taking. The product of the acceptance and efficiency correc-
tions (Acc × ε)J/ψ was calculated as the ratio of the number of the
simulated events that satisfy the event selection in Table 1 to the
number of generated events within −3.6 < y < −2.6. The final val-
ues for the combined acceptance and efficiency were found to be
16.6% and 14.3% for coherent and incoherent J/ψ , respectively. The
relative systematic error coming from the uncertainties on the trig-
ger chamber efficiencies used in these simulations amounts to 4%.
In addition, the muon reconstruction efficiency has been evaluated
both in data and simulations, in a way similar to that described in
[17], and a 6% relative systematic uncertainty on the (Acc × ε)J/ψ
corrections was assigned to account for the observed differences.

In order to evaluate the systematic error on the acceptance
coming from the generator choice, the acceptance was computed
from a parameterization of the results on coherent J/ψ production
in [5]. It was also calculated by modifying the rapidity distribution
in STARLIGHT and letting it vary between a flat distribution and
a distribution consistent with the model with the steepest slope
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Fig. 1. Invariant mass distribution for events with exactly two oppositely charged muons satisfying the event selection described in the text.
(AB-MSTW08, see below for definition) over the range −3.6 < y <

−2.6. The differences in acceptance between the methods were
below 3%, which was taken into account in the systematic er-
ror calculation. It is assumed in these calculations that the J/ψ
is transversely polarized. Transverse polarization is expected for a
quasi-real photon from s-channel helicity conservation. This has
been confirmed experimentally for exclusive J/ψ production in
γ + p → J/ψ + p interactions [20,21] and for exclusive ρ0 pho-
toproduction in heavy-ion collisions [8]. Owing to the low pT of
the J/ψ , the calculations are insensitive to the choice of reference
frame (here the helicity frame was used), and the polarization axis
effectively coincides with the beam axis.

Activity in the central barrel was checked for events with in-
variant mass in the range 2.8 < Minv < 3.4 GeV/c2. No events with
more than one tracklet in the Si-Pixel (SPD) detector were found.
The events with one tracklet (6 out of 117) were not removed, as
this level of activity is consistent with the background from ran-
dom combinations of noise hits.

The invariant mass distribution for opposite sign (OS) muon
pairs with 2.2 < Minv < 4.6 GeV/c2 is shown in Fig. 1. A J/ψ peak
is clearly visible in the spectrum, on top of a continuum coming
from γ γ → μ+μ− . Only two like-sign dimuon pairs are in the in-
variant mass range 2.2 < Minv < 4.6 GeV/c2, at 2.3 GeV/c2 and
2.8 GeV/c2. The combinatorial background is therefore estimated
to be � 2% at 90% confidence level in the invariant mass range
2.8 < Minv < 3.4 GeV/c2.

The J/ψ yield was obtained by fitting the dimuon invariant
mass spectrum in the range 2.2 < Minv < 4.6 GeV/c2 with an
exponential function to describe the underlying continuum, and
a Crystal Ball function [22] to extract the J/ψ signal. The Crys-
tal Ball tail parameters (αCB and n) were fixed to values ob-
tained from simulations. The central mass value from the fit is
3.123 ± 0.011 GeV/c2, which is within 2.4σ (0.8%) of the known
value of the J/ψ mass and compatible with the absolute calibration
accuracy of the muon spectrometer. The width, 84 ± 14 MeV/c2,
is in agreement with the Monte Carlo simulations. The extracted
number of J/ψs is Nyield = 96 ± 12(stat) ± 6(syst). The systematic
error on the yield (6%) was obtained by varying the Crystal Ball
tail parameters. The exponential slope parameter of the continuum
is −1.4 ± 0.2 GeV/c2 in good agreement with the correspond-
ing Monte Carlo expectation (−1.39 ± 0.01 GeV/c2). This, together
with the fact that the pT distribution is consistent with the expec-
tations from STARLIGHT, is an additional indication that there is no
unexpected background in the invariant mass range considered.

The fraction f D of the J/ψ mesons coming from the decay of
ψ ′ → J/ψ + anything was estimated by simulating a sample of
coherently produced ψ ′s with STARLIGHT, using PYTHIA [23] to
simulate their decay into J/ψ . The detector response was simulated
as described above. The contribution from incoherently produced
ψ ′ is expected to give a negligible contribution for pT < 0.3 GeV/c
and was not considered. Unlike the directly produced J/ψ dis-
cussed above, the polarization of J/ψs coming from ψ ′ decays
cannot easily be predicted, since the polarization of the original
ψ ′ can be shared between the J/ψ and the other daughters in dif-
ferent ways. The ψ ′ decay was therefore simulated by assuming
the following J/ψ polarizations: (i) no polarization (NP), (ii) full
transverse (T), and (iii) full longitudinal (L). The J/ψ fraction com-
ing from ψ ′ decay for a given polarization P , f P

D can be written
as:

f P
D = σψ ′ · B R(ψ ′ → J/ψ + anything) · (Acc × ε)P

ψ ′→J/ψ

σJ/ψ · (Acc × ε)J/ψ
, (1)

where the (Acc × ε)J/ψ and (Acc × ε)P
ψ ′→J/ψ were computed for

pT < 0.3 GeV/c.
According to STARLIGHT, the ratio between the ψ ′ and J/ψ co-

herent photoproduction cross sections is 0.19 giving f N P
D = 11.9%,

f T
D = 9.3%, f L

D = 16.8%. The cross sections ratio is significantly
lower in the pQCD inspired model [5], 0.087. This changes the
above fraction, giving f N P

D = 5.5%, f T
D = 4.3%, f L

D = 7.9%. The esti-
mates for f D thus range from 4.3% to 16.8%. The best estimate was
taken as the middle of this range with the extremes providing the
lower and upper limits, giving f D = (11 ± 6)%.

The dimuon pT distribution integrated over 2.8 < Minv <

3.4 GeV/c2 is presented in Fig. 2. The clear peak at low pT is
mainly due to coherent interactions, while the tail extending out
to 0.8 GeV/c comes from incoherent production. In addition, the
high-pT region may still contain a few hadronic events, which
makes it difficult to extract the incoherent photoproduction cross
section from these data. To estimate the fraction ( f I ) of incoher-
ent over coherent events in the region pT < 0.3 GeV/c, the ratio
σinc/σcoh, weighted by the detector acceptance and efficiency for
the two processes, was calculated, giving f I = 0.12 when σinc/σcoh
was taken from STARLIGHT, and f I = 0.08 when the model in
[5] was used. Four different functions were used to describe the
pT spectrum: coherent and incoherent photoproduction of J/ψ ,
J/ψ from ψ ′ decay, and two-photon production of continuum
pairs. The shapes for the fitting functions (Monte Carlo templates)
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Fig. 2. Dimuon pT distribution for events satisfying the event selection described in the text. The data points are fitted summing four different Monte Carlo templates:
coherent J/ψ production (dashed – blue), incoherent J/ψ production (dotted – red), J/ψs from ψ ′ decay (dash-dotted – violet), and γ γ → μ+μ− (dash-dotted – green).
The solid histogram (black) is the sum. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this Letter.)
were provided by STARLIGHT events folded with the detector sim-
ulation. The relative normalization was left free for coherent and
incoherent photoproduction. The contribution from the ψ ′ was
constrained from estimate above ( f D = (11 ± 6)%), and the two-
photon contribution was determined from the fit of the continuum
in Fig. 1. In the fit, the incoherent process is constrained mainly in
the region 0.5 < pT < 0.8 GeV/c, where the other three processes
are negligible. As this pT region (not used in the J/ψ signal extrac-
tion) is likely to suffer from some hadronic background, the fit can
only provide an upper limit on f I . The result is f I = 0.26 ± 0.05,
about a factor 2 larger than the estimate from the theoretical mod-
els quoted above. We conclude by taking the middle value of the
two calculations and the fit as the best estimate of f I , and the
other two results as lower and upper limits, respectively, giving
f I = 0.12+0.14

−0.04.
The fact that the Monte Carlo templates describe the pT distri-

bution well in the range 0.0 < pT < 0.8 GeV/c confirms that there
is no strong contamination from hadronic production in the event
sample. An upper limit on the contribution from hadronic interac-
tions can be obtained by considering events with pT > 1.0 GeV/c,
where the contribution from incoherent photoproduction is very
small. For hadronic J/ψ production it is known from the parame-
terization in Ref. [24] that (including the acceptance and efficiency
corrections) 82% of the yield is above pT > 1.0 GeV/c, while only
2% is below pT < 0.3 GeV/c. If one conservatively assumes that
the 32 events in the data sample with pT > 1.0 GeV/c are all
from hadronic production, the expected yield from hadronic inter-
actions below pT < 0.3 GeV/c can be estimated to be (0.02/0.83) ·
32 = 0.8 events. This is thus less than a 1% contamination. A sim-
ilar estimate can be obtained by scaling the measured cross sec-
tion for J/ψ production in Pb–Pb collisions [17] with the num-
ber of binary collisions assuming that all events with 80–100%
centrality survive the event selection (a very conservative as-
sumption). The conclusion is thus that the contamination from
hadronic interactions is negligible and no correction need be ap-
plied for it.

Finally, the total number of coherent J/ψs is calculated from
the yield extracted from the fit to the invariant mass distribution
by

Ncoh
J/ψ = Nyield

1 + f I + f D
, (2)

resulting in Ncoh
J/ψ = 78 ± 10(stat)+7

−11(syst).

The coherent J/ψ differential cross section is given by:

dσ coh
J/ψ

dy
= Ncoh

J/ψ

(Acc × ε)J/ψ · εtrig · B R(J/ψ → μ+μ−) ·Lint · �y
,

(3)

where Ncoh
J/ψ is the number of J/ψ candidates from Eq. (2),

(Acc × ε)J/ψ corresponds to the acceptance and efficiency of the
muon spectrometer, as discussed above, and εtrig is the VZERO
trigger efficiency. B R(J/ψ → μ+μ−) = 5.93% is the branching ra-
tio for J/ψ decay into muons [25], �y = 1 the rapidity interval
bin size, and Lint the total integrated luminosity. During the 2011
Pb–Pb run the VZERO detector was optimized for the selection of
hadronic Pb–Pb collisions, with a threshold corresponding to an
energy deposit above that from a single minimum ionizing parti-
cle (MIP). The distribution of the signal produced by a MIP crossing
the 2 cm thick VZERO scintillator has a Landau shape. To get an
accurate simulation of the efficiency for low multiplicity events
with this threshold setting, would require an almost perfect repro-
duction of the Landau by the MC simulation. Therefore we used
the QED continuum pair production for the normalization and not
Eq. (3).

In addition to exclusive J/ψ , the FUPC trigger selected γ γ →
μ+μ− events, which are very similar to coherent J/ψ decays in
terms of kinematics and associated event characteristics. This re-
action is a standard QED process, which in principle can be calcu-
lated with high accuracy. The fact that the photon coupling to the
nuclei is Z

√
α (with Z = 82 here) rather than just

√
α increases

the uncertainty of the contribution from higher order terms. Pre-
dictions exist where this effect is negligible [26]. However, other
studies obtained a 16% reduction in the cross section from higher
order terms in Pb–Pb collisions at the LHC [27]. There is also
an uncertainty associated with the minimum momentum trans-
fer and the nuclear form factor [28]. Two-photon production of
μ+μ−-pairs from STARLIGHT was used to determine the trigger
efficiency [19]. The cross sections from STARLIGHT for two-photon
production of e+e− and μ+μ− pairs have previously been com-
pared with results from STAR [29] and PHENIX [9], respectively.
The predictions from STARLIGHT have been found to be in good
agreement with the experimental results. These results, however,
have uncertainties of about 25 to 30%. In the absence of high
precision measurements constraining the model, and taking into
account the outstanding theoretical issues mentioned above, the
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uncertainty in the STARLIGHT two-photon cross section is esti-
mated to be 20%.

The cross section for γ γ → μ+μ− can be written in a similar
way to Eq. (3) and the ratio of the two is independent of luminos-
ity and of the trigger efficiency:

dσ coh
J/ψ

dy
= 1

B R(J/ψ → μ+μ−)
· Ncoh

J/ψ

Nγ γ
· (Acc × ε)γ γ

(Acc × ε)J/ψ
· σγγ

�y
, (4)

where Nγ γ was obtained by counting the number of events in
the invariant mass intervals 2.2 < Minv < 2.6 GeV/c2 (Nγ γ = 43 ±
7(stat)) and 3.5 < Minv < 6 GeV/c2 (Nγ γ = 15 ± 4(stat)), to avoid
contamination from the J/ψ peak. To determine σγγ STARLIGHT
[19] was used. The cross section for dimuon invariant mass be-
tween 2.2 < Minv < 2.6 GeV/c2 or 3.5 < Minv < 6 GeV/c2, dimuon
rapidity in the interval −3.6 < y < −2.6, and each muon satis-
fying −3.7 < η1,2 < −2.5 is σγγ = 17.4 μb (σγγ = 13.7 μb and
σγγ = 3.7 μb for the low and high invariant mass intervals, re-
spectively). The (Acc × ε)γ γ for events satisfying the same selec-
tion was calculated using events from STARLIGHT folded with the
detector simulation as described above. The data cuts applied to
the Monte Carlo sample were the same as those applied for the
J/ψ data analysis, resulting in a (Acc × ε)γ γ of 42.1% (37.9% for
2.2 < Minv < 2.6 GeV/c2 and 57.5% for 3.5 < Minv < 6 GeV/c2).

A possible source of inefficiency comes from correlated QED
pair production, i.e. interactions which produce both a J/ψ and a
low mass e+e−-pair (the latter has a very large cross section), with
one of the electrons hitting the VZERO-A detector and thus vetoing
the event. This effect was studied with data, in a sample collected
with comparable luminosity by a control trigger, requiring a coin-
cidence of at least two muons in the muon arm trigger with hits
in both the VZERO-A and VZERO-C. Two J/ψ events were found
in this sample, giving an upper limit on the inefficiency smaller
than 2%.

Since the kinematic distributions of the muons from J/ψ de-
cays and γ γ processes are different, the systematic uncertainties
on the corresponding (Acc × ε) corrections coming from the un-
certainties on the muon trigger and reconstruction efficiencies do
not exactly cancel out in Eq. (4). In order to account for this effect,
a 50% correlation factor has been estimated, conservatively, when
computing the systematic uncertainty on the ratio. The sources
of the systematic error are summarized in Table 1. The final re-
sult is a differential cross section for coherent J/ψ production of
dσ coh

J/ψ/dy = 1.00 ± 0.18(stat)+0.24
−0.26(syst) mb.

The cross section is compared with calculations from various
models [5,11–14] in Fig. 3. The differences between the models
come mainly from the way the photonuclear interaction is treated.
The predictions can be divided into three categories:

i) those that include no nuclear effects (AB-MSTW08, see below
for definition). In this approach, all nucleons contribute to the
scattering, and the forward scattering differential cross sec-
tion, dσ/dt at t = 0 (t is the momentum transfer from the
target nucleus squared), scales with the number of nucleons
squared, A2;

ii) models that use a Glauber approach to calculate the number of
nucleons contributing to the scattering (STARLIGHT, GM, and
CSS). The reduction in the calculated cross section depends on
the total J/ψ-nucleon cross section;

iii) partonic models, where the cross section is proportional to the
nuclear gluon distribution squared (AB-EPS08, AB-EPS09, AB-
HKN07, and RSZ-LTA).

STARLIGHT uses the latest HERA data on exclusive J/ψ pro-
duction in photon–proton interactions [20,21] as input to calcu-

Fig. 3. Measured coherent differential cross section of J/ψ photoproduction in ultra-
peripheral Pb–Pb collisions at

√
sNN = 2.76 TeV. The error is the quadratic sum of

the statistical and systematic errors. The theoretical calculations described in the
text are also shown. The rapidity distributions are shown in a), b) shows the cross
section integrated over −3.6 < y < −2.6, and c) shows the ratio of the cross sec-
tions in the rapidity intervals −3.1 < y < −2.6 and −3.6 < y < −3.1. The dashed
lines in the lower two plots indicate the three model categories discussed in the
text.

late the corresponding photon-nucleus cross section. The model
by Goncalves and Machado (GM) [13] calculates the J/ψ-nucleon
cross section from the Color Dipole model, whereas Cisek, Szczurek,
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and Schäfer (CSS) [14] use the essentially equivalent k⊥-factor-
ization approach. The difference of about 25% between the two
calculations is due to different treatment of the nucleon gluon
distribution at low x (gluon saturation), and the way in which it
affects the dipole-nucleon cross section.

Calculations by Adeluyi and Bertulani (AB) [12] and by Re-
byakova, Strikman, and Zhalov (RSZ) [5] are based on perturbative
QCD. The calculations by Rebyakova et al. use a cross section for
exclusive J/ψ photoproduction on a proton target calculated from
leading order perturbative QCD within the leading log approxima-
tion. The calculations use the integrated gluon density distribution
in the proton determined by the Durham-PNPI group from data on
exclusive J/ψ production at HERA [4]. The modification to the nu-
clear gluon distribution has been calculated in the Leading Twist
Approximation [30] and is based on using the DGLAP evolution
equations and the HERA diffractive parton density distributions.

Adeluyi and Bertulani constrain the nucleon parton distribu-
tions to be consistent with data on exclusive vector meson produc-
tion in photon–proton interactions. The photonuclear cross section
is then calculated using different standard parameterizations of the
nuclear gluon distribution functions (EPS08, EPS09, and HKN07).
For comparison, they also performed calculations where the con-
strained nucleon gluon distribution function is scaled with the
number of nucleons without shadowing or other nuclear effects
(AB-MSTW08).

In the region of interest here, −3.6 < y < −2.6, the sensitivity
to shadowing is reduced compared with that at mid-rapidity. Away
from mid-rapidity, there is a two-fold ambiguity in the photon en-
ergy and the momentum transfer from the nucleus acting as pho-
ton target. For example, a J/ψ produced at y = 3 corresponds to
a photon–proton centre-of-mass energy of either Wγ p = 414 GeV
or Wγ p = 21 GeV. These two energies in turn correspond to val-
ues of x of about 5 × 10−5 and 2 × 10−2, respectively. According to
STARLIGHT interactions with Wγ p = 21 GeV contribute 94% of the
cross section, while events with Wγ p = 414 GeV contribute only
6%. The total dσ coh

J/ψ/dy at y = 3 is therefore mainly sensitive to

the gluon distribution around x = 2 × 10−2.
The measured cross section, dσ coh

J/ψ/dy = 1.00 ±
0.18(stat)+0.24

−0.26(syst) mb, is compared with the model predictions
in Fig. 3 a). Fig. 3 b) shows a comparison of the cross section
integrated over the range −3.6 < y < −2.6. The models with
largest deviations from the measured value are STARLIGHT and
AB-MSTW08, which both deviate by about 3 standard deviations
if the statistical and systematic errors are added in quadrature.
Best agreement (within one standard deviation) is seen for the
models RSZ-LTA, AB-EPS09, and AB-EPS08, which include nuclear
gluon shadowing. A further check can be performed by dividing
the rapidity interval in two and determining the ratio of the cross
sections in each interval. This has the advantage that some parts
of the systematic errors cancel, and the dominant remaining er-
ror is the statistical error. The result is R = σ(−3.1 < y < −2.6)/

σ (−3.6 < y < −3.1) = 1.36 ± 0.36(stat) ± 0.19(syst). The system-
atic error includes the uncertainties in the signal extraction and
in the trigger and reconstruction efficiency. The measured ratio
is compared with that from the models in Fig. 3 c). The only
models which deviate by more than one standard deviation are
AB-MSTW08 and AB-HKN07 (1.7 and 1.5 standard deviations, re-
spectively).

In summary, the first LHC measurement on exclusive photo-
production of J/ψ in Pb–Pb collisions at

√
sNN = 2.76 TeV has

been presented and compared with model calculations. The AB-
MSTW08 model, which assumes that the forward scattering cross
section scales with the number of nucleons squared, disagrees
with the measurement, both for the value of the cross section

and for the ratio of the two rapidity intervals, and is strongly
disfavoured. STARLIGHT deviates by nearly three standard devia-
tions in the cross section and is also disfavoured. Best agreement
is found with models which include nuclear gluon shadowing
consistent with the EPS09 or EPS08 parameterizations (RSZ-LTA,
AB-EPS09, and AB-EPS08).

Acknowledgements

The ALICE Collaboration would like to thank all its engineers
and technicians for their invaluable contributions to the construc-
tion of the experiment and the CERN accelerator teams for the
outstanding performance of the LHC complex.

The ALICE Collaboration acknowledges the following funding
agencies for their support in building and running the ALICE detec-
tor: Calouste Gulbenkian Foundation from Lisbon and Swiss Fonds
Kidagan, Armenia; Conselho Nacional de Desenvolvimento Cien-
tífico e Tecnológico (CNPq), Financiadora de Estudos e Projetos
(FINEP), Fundação de Amparo à Pesquisa do Estado de São Paulo
(FAPESP); National Natural Science Foundation of China (NSFC),
the Chinese Ministry of Education (CMOE) and the Ministry of
Science and Technology of China (MSTC); Ministry of Education
and Youth of the Czech Republic; Danish Natural Science Re-
search Council, the Carlsberg Foundation and the Danish National
Research Foundation; The European Research Council under the
European Community’s Seventh Framework Programme; Helsinki
Institute of Physics and the Academy of Finland; French CNRS-
IN2P3, the ‘Region Pays de Loire’, ‘Region Alsace’, ‘Region Auvergne’
and CEA, France; German BMBF and the Helmholtz Association;
General Secretariat for Research and Technology, Ministry of De-
velopment, Greece; Hungarian OTKA and National Office for Re-
search and Technology (NKTH); Department of Atomic Energy and
Department of Science and Technology of the Government of In-
dia; Istituto Nazionale di Fisica Nucleare (INFN) of Italy; MEXT
Grant-in-Aid for Specially Promoted Research, Japan; Joint Insti-
tute for Nuclear Research, Dubna; National Research Foundation of
Korea (NRF); CONACYT, DGAPA, México, ALFA-EC and the HELEN
Program (High-Energy Physics Latin-American-European Network);
Stichting voor Fundamenteel Onderzoek der Materie (FOM) and the
Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO),
Netherlands; Research Council of Norway (NFR); Polish Ministry of
Science and Higher Education; National Authority for Scientific Re-
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