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A nonlinear model describing DNA dynamics, called helicoidal Peyrard–Bishop model, is described.
It is shown that the model can explain a local opening of a DNA helix during transcription. An
impact of friction forces is also studied. It is pointed out that a role of viscosity is crucial for
DNA-RNA transcription.

Keywords: Helicoidal Peyrard–Bishop model; solitons; DNA-RNA transcription; nonlinear
Schrödinger equation; localised modulated wave; local opening of DNA; viscosity.

0. Introduction

DNA is doubtlessly the most sophisticated molecule in Nature. It exists in a very centre
of secrets that should be unveiled to understand life. However, whenever a scientist moves
towards the centre of the secret he feels that the secret’s radius becomes bigger and bigger
and the centre mysteriously eludes. A helicoidal structure of DNA is fascinating. It looks
like an enfolded molecule, being able to wrap its mysteriousness.

This review paper represents the author’s admiration of this beauty and his attempts
to penetrate into the Nature’s wander called DNA. In Sec. 1 some information about the
molecule is offered for people who are not biologists. Section 2 represents a brief mathemat-
ical introduction important for the rest of the paper. One of nonlinear models describing
DNA dynamics is explained in Sec. 3, as well as its improvement when viscosity is taken
into consideration. The paper is closed with some concluding remarks in Sec. 5.

A special attention is devoted to mathematical basis of the model. A nonlinear differen-
tial equation is solved using a semi-discrete approximation, which means that an envelope
of the wave is treated in a continuum limit while a carrier component includes discreteness.
This is an example of a multiple-scale method (derivative-expansion method), a procedure
well-known in mathematical physics. Finally, a well-known nonlinear Schrödinger equation
(NLSE) is obtained. It is shown in Sec. 3.4 that the NLSE does not have an analytical
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solution when viscosity is taken into consideration as its nonlinear parameter becomes
complex.

1. DNA Molecule

In this introductory section some basics of molecular biology of nucleic acids are explained.
More information can be found in a variety of textbooks [1–4].

1.1. DNA structure

It is well known that DNA molecule is a double helix. This means that it consists of two
complementary polymeric chains twisted around each other [2]. Its structure was determined
in 1953. This was explained in a historic one page paper [5]. The DNA molecule is a
biopolymer as each strand is a polymeric collection of nucleotides. Each nucleotide consists
of a sugar, a phosphate group and a base. This is shown in Fig. 1. There are four different
bases. These are: thymine (T) and cytosine (C) which are pyrimidines and adenine (A)
and guanine (G) which are purines. The sugar of each nucleotide is linked by a phosphate
group to a sugar of the adjacent nucleotide (Fig. 1). There are only two possible pairs and
these are AT and CG. The two chains are joined together by hydrogen bonds, which will
be explained later.

Fig. 1. DNA chain including four different nucleotides.
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DNA is the biggest known molecule. Its relative molar mass can have a value of 109.
The molecule of such mass, extracted from E-coli, is about 400µm long [3] while DNA in
human cell can be as long as 2m. The molar masses of the bases, the phosphate and the
sugar are:

MT = 126 g/mol MC = 111 g/mol MP = 95g/mol

MA = 135 g/mol MG = 151 g/mol MS = 134 g/mol.

Notice that the masses of nucleotides differ from a mean value for up to about 4%.
This is important as simplified models usually assume a homogeneous crystal structure
meaning that all nucleotides are equal. Hence, for the average nucleotide mass a value
m = 5.1 · 10−25 kg will be used in this paper. Notice that, to obtain the nucleotide from
its constituents, three water molecules should be removed. It might be important to notice
that the masses of the AT and the CG pairs are equal. DNA density is about 1.7 g/cm3

[3]. The diameter of the helix is about 20 Å and each chain makes a complete turn every
34 Å [2].

1.2. Chemical bonds in DNA

A chemical bond is a force that holds atoms together. Atoms united by strong covalent
bonds belong to the same molecule. For example, in a system O–H · · · O the covalent bond
is stronger and shorter (line) while the hydrogen bond is weaker and longer (dots). This
means that the left oxygen atom and the hydrogen belong to the same water molecule and
the right oxygen does not. Each water molecule can form four hydrogen bonds with the
neighbouring molecules. The nucleotides are also connected by the covalent bonds. It was
mentioned above that the two chains are joined together by the weak hydrogen bonds. The
CG pair is shown in Fig. 2. One can notice three hydrogen bonds. It is important to keep
in mind that A and T are attached by a double bond only.

Fig. 2. The CG pair.
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A number of covalent bonds an atom forms is called its valence. For example, oxygen
can form two covalent bonds, the valence of nitrogen is three and of carbon is four. This
can be easily recognized in Fig. 1.

We should know that the hydrogen bonds are only one type of the weak forces but
crucial for DNA molecule. Let us compare the bonds mentioned above. Required energies
to break C-C and C-N covalent bonds are 348.6kJ/mol and 336kJ/mol, respectively [3].
Energy of hydrogen bonds is 4–29kJ/mol [3]. Its mean value is about 16kJ/mol, which is
eight times the average energy of thermal motion of molecules at room temperature [2].

1.3. DNA, RNA, gene

A gene is a DNA segment responsible for a biosynthesis of one polypeptide chain. When
a protein contains more than one polypeptide chain, each chain is made separately. The
average gene contains about 900 to 1500 nucleotide pairs [2]. As all the sugars and the
phosphates are equal it is obvious that a genetic information is determined by a sequence
of the base pairs.

Ribonucleic acid (RNA) is a bridge between DNA and proteins. Namely, DNA con-
trols the biosynthesis of the proteins using RNA molecule. For this to be done the genetic
information should be transferred from DNA to much shorter single stranded RNA. This
process is called transcription.

To understand a complete structure of the double helix as well as DNA dynamics we
should know how the nucleotides interact with water molecules. Bases are hydrophobic,
which means that they are insoluble in water. On the other hand, the sugars and the
phosphates form bonds to water molecules [2]. As a result we can imagine sugar-phosphate
backbone to be on a surface of a cylinder while the bases are oriented toward its centre.
This means that the sugar-phosphate backbone represents a protection for the genetically
crucial bases.

2. Solitons

This short section represents a mathematical basis important for the rest of the paper. It
is assumed that soliton and solitonic wave are synonyms. A definition of the soliton will be
explained referring to [6].

Let Φ(x, t) be a solution of a certain partial differential equation (PDE). If the function
Φ depends on x and t through a coordinate ξ defined as

ξ = x − ut (2.1)

where u is constant then the PDE becomes an ordinary differential equation (ODE). If so
then Φ(ξ) represents a travelling wave [6]. This is shown in Fig. 3.

A solitonic wave is defined as a localized travelling wave. An example is shown in
Fig. 4(a). There is a more general definition of the soliton. The soliton is also a type of
the travelling wave such that a transition from an asymptotic state ξ → −∞ into ξ → +∞
is localized in ξ [6]. Such soliton is shown in Fig. 4(b).

An example of the soliton shown in Fig. 4(a) can be a solution of the Korteweg-de Vries
(KdV) equation which is

Φt + αΦΦx + Φxxx = 0 (2.2)
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Fig. 3. A travelling wave.

(a) (b)

Fig. 4. Solitonic waves (a) An envelope solitonic wave or a bell type soliton. (b) A solitonic wave with
different asymptotic values for ξ → −∞ and ξ → +∞.

where Φ ≡ Φ(x, t), indexes t and x denote partial derivatives and α is a constant. The
solution of (2.2) is so-called a bell type soliton

Φ(x − ut) =
3u
α

sech2

[√
u

2
(x − ut)

]
. (2.3)

It is important to notice a general characteristic of the solitons which is a dependence
of the amplitude from its velocity [7, 8]. The waves with higher velocities are both faster
and shorter, which can be easily recognized from (2.3) if the solitonic width Λ is defined
through its wave number as

2π
Λ

=
√

u

2
. (2.4)

This was experimentaly proven in the middle of the 19th century [9] and is demonstrated
in Fig. 5.

An example of the soliton shown in Fig. 4(b) can be a solution of the sine-Gordon
equation

Φxx − Φtt = sin Φ (2.5)

where Φ ≡ Φ(x, t) and indexes t and x denote partial derivatives as above. The solution of
(2.5) is a kink soliton (+) or a kink antisoliton (−) [6]

Φ = 4arc tg
[
exp

±(x − ut)√
1 − u2

]
. (2.6)
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Fig. 5. The function (2.3) for α = 3. The velocities are: u = 2 (faster soliton) and u = 1. (a) t = −5. (b)
t = 2. (c) t = 10.
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Fig. 6. The function (2.5) for u = 0.2. (a) t = −20. (b) t = 0. (c) t = 30.

The kink soliton is shown in Fig. 6. The corresponding antisoliton would be a decreasing
function.

Both examples, the KdV and the sine-Gordon equations, have been used in nonlinear
biophysics. The KdV equation does not have an application in the theory of DNA but can
be used to describe dynamics of microtubule [10].

The sine-Gordon equation, i.e. the solitons shown in Figs. 4(b) and 6, are widely used in
nonlinear DNA dynamics. Some of the models relying on this equation will be mentioned
at the beginning of the next section.

This paper is primarily devoted to the helicoidal Peyrard–Bishop (HPB) model. Accord-
ing to this nonlinear model, DNA dynamics is described by a modulated solitonic wave,
given by (3.32). When viscosity is taken into consideration the wave becomes demodulated
and, consequently, looks like the envelope soliton shown in Fig. 4(a). Notice that the equa-
tion (3.32) becomes like (2.3) if cosines are set to be zero. This is an interesting point
requiring further research.
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3. Nonlinear Models of DNA

DNA is doubtlessly one of the most important and the most interesting biomolecules. There
have been many attempts to describe its complex dynamics with appropriate models. Some
of them, both linear and nonlinear, were described by Yakushevich [11].

It was in 1980 when Englander et al. suggested that nonlinear effects might play an
important role in the DNA dynamics [12]. The authors stated that the nonlinear effects
may focus the vibration energy of DNA into localized soliton-like excitations.

A key problem in each model is a choice of degrees of freedom. Simply speaking, one can
talk of either torsional or vibrational dynamics [13], i.e. of torsional or vibrational models.
Of course, some extensions, i.e. models combining rotational and transverse motions using
both angular and radial coordinates, are possible [14, 15].

An example of the torsional models is Y model, introduced by Yakushevich [16]. The
model has been studied, extended and improved [17–23]. According to this model, DNA
dynamics is represented by the wave shown in Figs. 4(b) and 6.

Another interesting example is a model introduced by Daniel and Vasumathi [24–26].
This model is a certain mixture of the plane-base rotator (PBR) model and the Heisenberg’s
spin model for a ferromagnetic chain. The PBR model was proposed by Yomosa [27, 28] and
improved by Homma and Takeno [29]. According to this approach the degree of freedom
characterizing base rotations in the plane perpendicular to the helical axis around the back-
bone structure is assumed while the introduced Hamiltonian is based on the Heisenberg’s
spin model for the ferromagnetic chain. Like above, all this brings about the wave shown in
Figs. 4(b) and 6. It may be interesting to point out that this approach can be used to study
modulation instability in DNA double helix [30] as well as DNA-protein interaction [31].

In what follows, an example of the vibrational models will be explained in details. It
will be shown that the wave describing DNA dynamics is a localized modulated wave. Its
envelope is similar to the wave shown in Fig. 4(a).

3.1. The Peyrard–Bishop (PB) model

The B-form DNA in the Watson–Crick model is a double helix, which consists of two strands
s1 and s2 as shown in Fig. 7. The nucleotides are linked by the nearest-neighbor harmonic
interactions along the chains [32]. It was explained in Sec. 1.1 that the masses of nucleotides
do not differ too much which means that one can assume a homogeneous crystal structure.
Hence, a common mass m for all the nucleotides and the same coupling constant k for the
harmonic longitudinal springs along each strand are assumed.

The strands are coupled to each other through the hydrogen bonds, which are supposed
to be responsible for transversal displacements of the nucleotides. As these bonds are weak
while the harmonic longitudinal are strong the PB model neglects all the displacements
beside the transversal [32]. The hydrogen bond is modeled by the Morse potential

VM (un − vn) = D[e−a(un−vn) − 1]2 (3.1)

where un and vn are the displacements of the nucleotides at the position n from their
equilibrium positions along the direction of the hydrogen bond. Notice that un and vn in
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Fig. 7. A graphical representation of the simple model for DNA strands.

Fig. 7 have opposite signs. The parameters D and a in (3.1) are the depth and the inverse
width of the Morse potential well, respectively. Therefore, the Hamiltonian for the DNA
chain is

H =
∑{

m

2
(u̇2

n + v̇2
n) +

k

2
[(un − un−1)2 + (vn − vn−1)2]

}
+ VM (un − vn) (3.2)

where u̇n and v̇n represent the appropriate velocities. The Morse potential represents not
only the hydrogen bonds but the repulsive interactions of the phosphate and the surrounding
solvent action as well [33].

We are not going to proceed with the explanations concerning the PB model as all its
ideas are included in the extended version which is a topic of the next section.

3.2. The helicoidal Peyrard–Bishop (HPB) model

The model explained above does not take helicoidal structure of DNA into consideration.
The improved version of the PB model, introduced by Dauxois [33], does. It would be fair to
call this model as the Peyrard–Bishop–Dauxois model. However, this name has been usually
used for a somewhat similar model [34, 35]. This is why a name helicoidal Peyrard–Bishop
(HPB) model might be a more appropriate choice.

To improve the PB model a new term, describing the helicoidal interactions, should be
aided to the Hamiltonian (3.2). Let us imagine that DNA in Fig. 7 is twisted. If so then a
certain nucleotide, belonging to the strand s1, will come to the position s2 after a turn of
π. This means that a nucleotide at the site n of one strand interacts with both (n + h)th
and (n − h)th nucleotides of the other strand [33]. It is assumed that this additional term
is harmonic and the whole Hamiltonian, describing the HPB model, becomes [33]

H =
∑{

m

2
(u̇2

n + v̇2
n) +

k

2
[(un − un−1)2 + (vn − vn−1)2]

+
K

2
[(un − vn+h)2 + (un − vn−h)2] + D[e−a(un−vn) − 1]2

}
(3.3)



August 27, 2011 11:17 WSPC/1402-9251 259-JNMP S1402925111001635

Helicoidal Peyrard–Bishop Model of DNA Dynamics 471

where K is the harmonic constant of the helicoidal spring. As the helix has a helical pitch
of about 10 base pairs (bp) per turn [36] one can assume h = 5.

In what follows a whole mathematical procedure will be shown and it will be demon-
strated that DNA dynamics can be explained by the modulated solitonic wave. Of course,
some characteristics of the wave will be studied.

A first step is to introduce new coordinates representing the in-phase and the out-of-
phase transversal motions as

xn = (un + vn)/
√

2, yn = (un − vn)/
√

2. (3.4)

This is convenient because the Hamiltonian (3.3) brings about the following completely
decoupled dynamical equations of motion

mẍn = k(xn+1 + xn−1 − 2xn) + K(xn+h + xn−h − 2xn) (3.5)

mÿn = k(yn+1 + yn−1 − 2yn) − K(yn+h + yn−h + 2yn) + 2
√

2aD(e−a
√

2yn − 1)e−a
√

2yn .

(3.6)

The first of them describes usual linear waves (phonons) while the second one describes
nonlinear waves. It is important to notice that nonlinearity comes from the exponential
terms, i.e. from the Morse potential. This means that the weak hydrogen bonds are respon-
sible for the nonlinear effects in DNA and, maybe, in all biological systems. We restrict our
attention on the second nonlinear equation and assume that the oscillations of nucleotides
are large enough to be anharmonic but still small enough so that the nucleotides oscillate
around the bottom of the Morse potential well. This suggests the transformation

y = εΦ; (ε � 1). (3.7)

A true meaning of the parameter ε will be seen later. Equations (3.6) and (3.7) bring about

Φ̈n =
k

m
(Φn+1 + Φn−1 − 2Φn) − K

m
(Φn+h + Φn−h + 2Φn)

−ω2
g(Φn + εαΦ2

n + ε2βΦ3
n) (3.8)

where

ω2
g =

4a2D

m
, α =

−3a√
2

and β =
7a2

3
. (3.9)

The nonlinear wave Eq. (3.8) can be solved using a semi-discrete approximation [37]
according to which we look for wave solutions of the form

Φn(t) = F1(ξ)eiθn + ε[F0(ξ) + F2(ξ)ei2θn ] + cc + O(ε2) (3.10)

ξ = (εnl, εt), θn = nql − ωt (3.11)

where l is the distance between two neighbouring nucleotides in the same strand, ω is the
optical frequency of the linear approximation, q = 2π/λ is the wave number whose role
will be discussed later, cc represents complex conjugate terms and the function F0 is real.
A mathematical basis for the expression (3.10) is a multiple-scale method or a derivative-
expansion method [9, 38].
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From (3.10) one can see the true meaning of the parameter ε. The higher order terms
are required because of the last two terms in (3.8). The function F1 represents the envelope
which will be treated in a continuum limit while the carrier component eiθn will not. Hence,
this is the carrier component which includes discreteness and the expression (3.10) is called
the semi-discrete approximation. As the frequency of the carrier wave is much higher than
the frequency of the envelope we need two time scales, t and εt, for those two functions. Of
course, the same holds for the coordinate scales.

Now, the Eq. (3.8) can be solved. It was already pointed out that the functions Fi

would be treated in the continuum limit. Hence, taking this limit (nl → z) and applying
the transformations

Z = εz; T = εt (3.12)

one can straightforwardly obtain the following continuum approximation

F (ε(n ± h)l, εt) → F (Z, T ) ± FZ(Z, T )εlh +
1
2
FZZ(Z, T )ε2l2h2 (3.13)

where indexes Z and ZZ denote the first and the second derivative with respect to Z [39].
This brings about a new expression for the function Φn(t)

Φn(t) → F1(Z, T )eiθ + ε[F0(Z, T ) + F2(Z, T )ei2θ ] + cc

= F1e
iθ + ε[F0 + F2e

i2θ] + F ∗
1 e−iθ + εF ∗

2 e−i2θ (3.14)

where ∗ stands for complex conjugate and Fi ≡ Fi(Z, T ). Hence, one can easily obtain the
expression

Φ̇n = εF1T eiθ − iωF1e
iθ + ε2F0T + ε2F2T ei2θ − 2iεωF2e

i2θ + cc (3.15)

as well as all the terms in (3.8), such as

Φn+h + Φn−h + 2Φn

= {2F1[cos(qhl) + 1] + 2iεhlF1Z sin(qhl) + ε2h2l2F1ZZ cos(qhl)}eiθ

+ {2εF2[cos(2qhl) + 1] + 2iε2hlF2Z sin(2qhl)}ei2θ + 4εF0 + cc (3.16)

and

Φ3
n = 3|F1|2F1e

iθ + 3|F1|2F ∗
1 e−iθ + F 3

1 ei3θ + F ∗3
1 e−i3θ + O(ε). (3.17)

All this brings about the continuum version of (3.8). This crucial expression is

(ε2F1TT − 2iεωF1T − ω2F1)eiθ − (4iε2ωF2T + 4εω2F2) ei2θ + cc

=
k

m
{2F1[cos(ql) − 1]eiθ + 2iεlF1Zsin(ql)eiθ + ε2l2F1ZZ cos(ql)eiθ

+ 2εF2[cos(2ql) − 1]ei2θ + 2iε2lF2Z sin(2ql)ei2θ + cc}

− K

m
{2F1[cos(qhl) + 1]eiθ + 2iεhlF1Z sin(qhl)eiθ + ε2h2l2F1ZZ cos(qhl)eiθ

+ 2εF2[cos(2qhl) + 1]ei2θ + 2iε2hlF2Z sin(2qhl)ei2θ + 4εF0 + cc}
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−ω2
g [F1e

iθ + εF0 + εF2e
i2θ + 2εα|F1|2 + 2ε2α(F0F1 + F ∗

1 F2)eiθ

+ εαF 2
1 ei2θ + 2ε2αF1F2e

i3θ + 3ε2β|F1|2F1e
iθ + ε2βF 3

1 ei3θ + cc], (3.18)

representing a starting point for a couple of important expressions. These formulae can be
obtained equating the coefficients for the various harmonics [33, 39].

Equating the coefficients for eiθ, one obtains

ε2F1TT − 2iεωF1T − ω2F1

=
k

m
[2F1(cos(ql) − 1) + 2iεlF1Z sin(ql) + ε2l2F1ZZ cos(ql)]

− K

m
[2F1(cos(qhl) + 1) + 2iεhlF1Z sin(qhl) + ε2h2l2F1ZZ cos(qhl)]

−ω2
g [F1 + 2ε2αF0F1 + 2ε2αF ∗

1 F2 + 3ε2β|F1|2F1]. (3.19)

Neglecting all the terms with ε and ε2 we get a dispersion relation

ω2 ≡ ω2
y ≡ ω2

o = (4/m)[a2D + k sin2(ql/2) + K cos2(qhl/2)], (3.20)

which brings about the expression for the group velocity dω/dq as

Vg =
l

mω
[k sin(ql) − Kh sin(qhl)]. (3.21)

A corresponding dispersion relation for the in-phase oscillations described by (3.5) is

ω2
x ≡ ω2

a = (4/m)[k sin2(ql/2) + K sin2(qhl/2)]. (3.22)

The frequencies ωy and ωx are usually called optical and acoustical.
In the same way, equating the coefficients for ei0 = 1, one can easily obtain

F0 = µ|F1|2; µ = −2α
(

1 +
4K
mω2

g

)−1

. (3.23)

Both remaining coefficients (ei2θ and ei3θ) give a formula

F2 = δF 2
1 (3.24)

but with different values for the parameter δ. First attempts were carried out assuming a
simple version that is δ = −β/2α, coming from ei3θ [40]. However, a more physically-based
approach, using the terms for the more influential lower harmonic, should be better [41].
Hence, equating the coefficients for ei2θ and neglecting all the terms with ε2 and smaller,
one obtains the nonconstant δ

δ = ω2
gα

[
4ω2 − 2k

m
(1 − cos(2ql)) − 2K

m
(1 + cos(2hql)) − ω2

g

]−1

, (3.25)

depending on ql. This expression will be used throughout this paper.
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As the functions F0 and F2 can be expressed through F1 the equation for F1 should be
derived. Using new coordinates again

S = Z − VgT, τ = εT, (3.26)

one obtains the transformations for F1Z , F1ZZ , F1T and F1TT such as F1Z = F1S , F1T =
−VgF1S + εF1τ , etc. The meaning of (3.26), as well as of (3.12), will be discussed later.
Using equations (3.19)–(3.21), (3.23), (3.24) and (3.26) one can easily obtain the well-known
nonlinear Schrödinger equation (NLSE) for the function F1

iF1τ + PF1SS + Q|F1|2F1 = 0 (3.27)

where the dispersion coefficient P and the coefficient of nonlinearity Q are given by

P =
1
2ω

{
l2

m
[k cos(ql) − Kh2 cos(qhl)] − V 2

g

}
, Q = −ω2

g

2ω
[2α(µ + δ) + 3β]. (3.28)

An analytical solution of the NLSE exists. For PQ > 0 the solution of (3.27) is [6, 33, 42]

F1(S, τ) = A0 sech
(

S − ueτ

Le

)
exp

iue(S − ucτ)
2P

. (3.29)

Throughout this paper it will be assumed that P > 0 and Q > 0 [42]. The envelope
amplitude A0 and its width Le have the forms

A0 =

√
u2

e − 2ueuc

2PQ
, Le =

2P√
u2

e − 2ueuc

, ue > 2uc. (3.30)

The function (3.29) is the modulated solitonic wave where ue and uc are the velocities of
the envelope and the carrier waves, respectively.

Now, the expression for yn(t), defined by (3.7) and (3.10), can be easily obtained. How-
ever, before we proceed the parameters existing in the HPB model should be discussed.
There are two groups of them. One group are so-called intrinsic parameters describing the
geometry and the chemical interactions within DNA. These are: k, K, a, D and q = 2π/λ

and their values will be discussed later.
The second group are the parameters coming from the applied mathematical procedure.

These mathematical parameters are: ue, uc and ε. The velocities ue and uc are included in
the solution of the NLSE. On the other hand, ε does not have any physical meaning. This
is nothing but a “working” parameter, helping us to distinguish big and small terms in the
series expansion (3.10). Hence, one would expect that DNA dynamics does not depend on
it. In other words, ε exists in the derivations but is not expected to determine the final
solution yn(t). A careful investigation of all the formulae shows that only two mathematical
parameters are relevant and they are: εue and εuc. Also, it is important to notice that
the last part of (3.30) is very difficult to deal with. This is why it is more convenient to
introduce new mathematical parameters Ue and η defined as [43]

Ue = εue, η =
uc

ue
, 0 ≤ η < 0.5. (3.31)

We will return to this point later and show how Ue can be expressed through η. This,
practically, means that η remains the single mathematical parameter.
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Everything is prepared now for the final expression of the solution of (3.6). According to
the expressions (3.7), (3.10)–(3.12), (3.23), (3.24), (3.26) and (3.29)–(3.31) the stretching
of the nucleotide pair at the position n is

yn(t) = 2Asech
(

nl − Vet

L

){
cos(Θnl − Ωt) + Asech

(
nl − Vet

L

) [µ

2
+ δ cos(2(Θnl − Ωt))

]}
(3.32)

where

A ≡ εA0 = Ue

√
1 − 2η
2PQ

, L ≡ Le

ε
=

2P
Ue

√
1 − 2η

. (3.33)

The envelope velocity Ve, the wave number Θ and the frequency Ω are given by

Ve = Vg + Ue, Θ = q +
Ue

2P
, Ω = ω +

(Vg + ηUe)Ue

2P
. (3.34)

To plot the function yn(t) the values of all the parameters should be known. It was
already indicated that there were the two groups of them, mathematical (Ue, η) and intrinsic
parameters (k, K, a, D, q). The problem with the mathematical parameters has practically
been solved using the idea of a coherent mode (CM), assuming that the envelope and the
carrier wave velocities are equal, i.e. [44]

Ve =
Ω
Θ

. (3.35)

This means that the function yn(t) is the same at any position n. In other words, the wave
preserves its shape in time, indicating high stability [43]. This sort of stability suggests
that this mode is the most favourable one, i.e. the one representing the best description of
DNA dynamics in the context of the aforementioned model. Notice that (3.35) ensures that
(3.32) becomes one phase function. From the requirement (3.35) one can easily obtain the
function Ue(η), which is

Ue =
P

1 − η

[
−q + q

√
1 +

2(1 − η)
Pq2

(ω − qVg)

]
. (3.36)

This is a slowly increasing function of η [43]. Hence, there is only one mathematical param-
eter left. It was shown that only the values of η close to its maximum have physical meaning
[43]. Otherwise, DNA would not be stable. Hence, it was estimated that η should be close
to 0.5 and is certainly bigger than 0.4 [43].

The CM has a deeper meaning. It was mentioned above that (3.32) is the one phase
function if (3.35) is assumed. This means that yn(t) depends on nl and t through ξ = nl−Vet,
where Ve is a constant, representing the travelling wave. Therefore, yn(t), obviously being
localized, satisfy all the requirements for the solitonic wave as explained in Sec. 2. This
means that the CM is nothing but the solitonic mode (SM).

To deal with the values of the intrinsic parameters is extremely important but very
difficult task. The only satisfactory solution would be if all the values were determined
experimentally. Unfortunately, this has not been done yet. This means that, for now, we
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should be satisfied with their estimations only. As a result of these estimations only accepted
intervals of the values of the parameters are known. Of course, increasing knowledge brings
about shorter intervals. Finally, a certain combination should be picked up. This makes
possible to plot the function yn(t), to calculate the solitonic speed Ve, its width Λ, etc.
According to the figure one can recognise the amplitude of the stretching, the value of the
solitonic width and so on. If all these values have physical meaning and if the calculated
velocity Ve matches the experimental value one can conclude that the choice of the val-
ues of the parameters was probably correct. However, one should be careful as different
combination may bring about more or less equal results.

In what follows some estimations having been carried out so far will be presented.
The only approach that may bring about a satisfactory conclusion is a combination of the
estimations based on both theoretical and experimental results and their careful analysis.

The values of a and D were estimated according to some experimental data [44]. The
highest values for a product aD were estimated to be around 150 pN [45], 108 pN [46] or,
even, smaller [47, 48]. According to a theoretical paper [49] this product was estimated to
be about 140 pN [44]. Also, it was indicated that only small values of a are compatible
with the HPB model [44]. Otherwise, the series expansion of the exponential function in
the Morse potential would not be possible. Hence, it was concluded that the values existing
in the literature were overestimated and the values close to 1A◦−1 or, even, smaller were
suggested [44]. An experiment proposal to determine the values of these two parameters
was explained recently [50].

Let us study the possible values for the wave number q. The values found in literature
are from q = 0.01A◦−1

[33] to q = 0.39A◦−1
[51] without any arguments. It was suggested

that the corresponding wave length covers an integer number of the periods l [40], i.e.

q =
2π
λ

, λ = Nl, N integer. (3.37)

Hence, one can assume N as the internal parameter instead of q or λ. According to some
requirements (P > 0, Q > 0) a couple of small values of N have been excluded [52]. The
upper limit was estimated and the suggested interval became [52]

7 ≤ N ≤ 20, (3.38)

which corresponds to 0.09A◦−1 ≤ q ≤ 0.26A◦−1
as the well known value for the distance

between the two neighbouring nucleotides belonging to the same strand is l = 0.34 nm.
A variety of the values of the parameter k can be found in literature. The ratio of the

biggest and the smallest of them would be above 1000! According to rather detailed analysis
it was shown that most of these values have been underestimated [53]. Also, an experiment
proposal that could bring about its value or, to be more precise, very short interval for
k, was suggested [53]. Ratios k/K and K/a2D, as well as a maximum of K, were studied
recently [52].

All these efforts yield rather narrow intervals for the internal parameters. One example,
satisfying the experimental value for the solitonic speed [54], could be [52]

a = 1.2A◦−1
, D = 0.07 eV, k = 12N/m, K = 0.08N/m, N = 10, η = 0.47. (3.39)
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Fig. 8. The nucleotide pair stretching at t = 80ps for: a = 1.2A◦−1
, D = 0.07 eV, k = 12 N/m, K = 0.08N/m,

N = 10 and η = 0.47.

With these values and using the values for l, m and h that were mentioned above the
nucleotide pair stretching as a function of the position is obtained and shown in Fig. 8.

It is obvious that this is a localised modulated wave. It was argued above that this wave
satisfied all the criteria to be the solitonic one as the CM, i.e. the SM, was assumed. However,
there is not a unique definition of the solitons except the one rather imprecise working
definition saying that solitons are so stable that they emerge from a collision having the same
shapes and velocities with which they entered. Hence, it would be interesting if the wave
characteristics were studied experimentally. It was suggested recently how to study stability
of the wave during its propagation along DNA [55]. However, as was stated above, by
stability we usually mean how the waves behave upon collision. To study this characteristic
we need two waves. An experiment proposal to detect the waves before and after their
collision was presented recently [55]. In addition, it was suggested how to experimentally
determine the solitonic width Λ [55] and its speed Ve [56]. The goal of these experiments
would be not only to determine these values but to study how Ve and Λ depend on the
wave amplitude, i.e. on the initial stretching of the chosen base pair. Namely, a typical
characteristic of the solitons is the fact that the higher soliton is shorter and moves faster,
as explained in Sec. 2.

The experiments mentioned above are micromanipulating experiments. Namely, it is
possible to extract a DNA molecule from a cell and perform its mechanical manipulation
such as twisting, stretching and so on. The first such experiment was carried out in 1992
[57]. From then, a few techniques have been used for this kind of research. The mentioned
work has been the bases for a number of papers studying various elastic properties of
DNA [45–48, 58–64]. Those experiments were followed by theoretical research, numerical
simulations and review papers [35, 36, 65–69]. Note that some other molecules like sugars,
RNA, proteins, have been investigated using the micromanipulation techniques.

The solitonic width, corresponding to Fig. 8, is about 30 nucleotide pairs. As was men-
tioned above the appropriate experimental values do not exist. However, this width can be
compared with the solitonic width at a DNA segment involved in a process of transcription.
It was reported [70] that this width is between 8 and 17 nucleotides. Some experimental
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investigations suggest that this segment covers between 7 and 15 base pairs [71]. Obviously,
the width shown in Fig. 8 is higher. However, we should keep in mind that the transcription
is followed by a local unzipping, which can be understood as an extremely high amplitude.
It is well known that transcription occurs only at the segments where DNA is surrounded by
m-RNA polymerase (RNAP). Hence, the wave shown in Fig. 8 is an “ordinary” one, while
the solitons at the mentioned segments have much higher amplitudes, corresponding to the
local unzipping, which is a topic of the next section. As the increase of the amplitude means
the decrease of the solitonic width we can conclude that the solitonic width, corresponding
to Fig. 8, makes sense.

According to Fig. 8, one can see that the positive amplitude is a little bit bigger than
the negative one. This is coming from the higher order term in (3.32). Basically, this is a
result of the fact that the Morse potential is not symmetric, which means that the repulsive
force between the nucleotides is stronger than the attractive one.

3.3. Local opening of DNA

Any model is good, more or less, if it can explain something. The HPB model can explain
the local opening of DNA. This is a well known fact which happens during transcription.

The frequencies (3.20) and (3.22) were compared [33, 72]. One can notice that ωy > ωx

if K < a2D. For K = a2D these frequencies are equal at ql = π/h and it was suggested that
this could represent a resonance mode (RM) [72]. Notice that this value of ql is relevant
for the assumed values of h and N , i.e. for h = 5 and N = 10, which was explained
above. This mode was studied in more details [73, 74]. Before we proceed, one important
point should be discussed. Does it make sense to compare these two frequencies as the
corresponding equations (3.5) and (3.6) are decoupled? These equations are decoupled due
to the mathematical trick, i.e. the good choice of the coordinates (3.4). One should keep in
mind that ωo and ωa are not decoupled in a sense that they can be changed independently.
This is so because both frequencies depend on the same parameters k and K. Hence, they
are coupled through the common parameters.

A key point to understand is that local opening happens only at the segment where the
DNA chain is surrounded by RNAP molecules. At these segments the transcription occurs
which is nothing but the formation of m-RNA molecule from RNAP. Due to the RNAP
the interaction between the nucleotides belonging to the same pair is changed. This means
that the Morse potential at these segments is different from the potential at the rest of
the molecule. It is obvious that, for Fig. 8, i.e. for the values (3.39), the optical frequency
is higher than the acoustical one as a2D > K. It was explained that, at the segments
mentioned above, the decrease of a and D brings about the equality of a2D and K [73].
Of course, it was shown that the amplitude becomes infinitely large when the values of
these two frequencies approach each other and this was called as extremely high amplitude
(EHA) mode [73]. Also, the positive amplitude in Fig. 8 becomes bigger while the negative
one decreases and, finally, only the positive amplitude remains covering about 10 nucleotide
pairs, which represents the local opening [73]. Some additional arguments were offered and
it was suggested that the EHA mode is nothing but the RM [74].

A patient reader might have noticed that the real optical frequency is Ω rather than ωy.
This is correct and, in fact, these two frequencies were compared [73], while the explanation
given above is simplified.
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Notice that a quantitative treatment is not possible as the HPB model assumes the small
oscillations. Also, the infinitely large amplitude in the case of RM should not bother us as
the frictional forces have been neglected so far. A more realistic approach, taking viscosity
into consideration, is explained in the next section.

3.4. The HPB model including viscosity

The impact of the medium can be taken into consideration by adding a viscous force

Fv = −γẏn (3.40)

to the equation of motion (3.6) where γ represents a damping coefficient [75–77]. In (3.10)
and (3.11) θn and ω should be replaced by θnγ ≡ θγ and ωγ and qγ = q is assumed, which
will be verified later. It is convenient to express the damping coefficient in units of 10−11kg/s
[40] and to introduce a parameter χ as

γ = g · 10−11kg/s; χ = γ/2m. (3.41)

Following the procedure explained in Subsec. 3.2 one can obtain a new term in the basic
equation (3.18), which is

NT = [−εF1T eiθγ + iωγF1e
iθγ − ε2F0T − ε2F2T ei2θγ + 2iεωγF2e

i2θγ ]
γ

m
+ cc (3.42)

and Eqs. (3.20), (3.21) and (3.25) become

ω2
γ = ω2 − i2χωγ , Vγ ≡ Vgγ =

l

m

k sin(ql) − Kh sin(qhl)
ωγ + iχ

, (3.43)

δγ = ω2
gα[4ω2

γ − ∆ + i4χωγ ]−1, ∆ =
4
m

[k sin2(ql) + K cos2(hql)] + ω2
g . (3.44)

Notice that ω in (3.43) is the same as ω in (3.20) as qγ = q is assumed. Equations (3.23)
and (3.24) are not affected by the new term (3.42).

For ω > χ Eqs. (3.21) and (3.43) bring about

ωγ + iχ =
√

ω2 − χ2, Vγ =
ωVg√

ω2 − χ2
. (3.45)

A derivation of NLSE is a tedious but a straightforward job. The new coordinates (3.26)
should be used again, i.e.

Sγ ≡ S = Z − VγT, τ = εT, (3.46)

which brings about

i(ωγ + iβ)F1τ +
1
2

{
l2

m
[k cos(ql) − Kh2 cos(qhl)] − V 2

γ

}
F1SS

−ω2
g

2
[2α(µ + δγ) + 3β]|F1|2F1 = 0. (3.47)

Hence, using (3.45) one obtains the final expression for NLSE, which is

iF1τ + PγF1SS + Qγ |F1|2F1 = 0 (3.48)
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with the appropriate parameters being

Pγ =
1

2
√

ω2 − χ2

{
l2

m
[k cos(ql) − kh2 cos(qhl)] − V 2

g

}
(3.49)

and

Qγ = − ω2
g

2
√

ω2 − χ2
[2α(µ + δγ) + 3β]. (3.50)

A key point is the fact that the nonlinear parameter Qγ is complex, which means that (3.48)
should be solved numerically. It is convenient to separate the real and the imaginary parts
of the expression for Qγ . Using (3.44) and (3.50) one can straightforwardly obtain

Qγ = − ω2
gα√

ω2 − χ2
(Q1 + iQ2) ≡ Qr + iQi, (3.51)

where

Q1 = µ + CM + 1.5
β

α
, Q2 = CN, (3.52)

and

M = 4(ω2 − χ2) − ∆, N =
2γ
m

√
ω2 − χ2, C =

ω2
gα

M2 + N2
. (3.53)

Notice that Qr > 0 and Qi < 0 [78].
There are two requirements that should be satisfied to determine the maximum of the

parameter g. These are: ω > χ and Pγ > 0. It was shown that the allowed interval is
0 < g < 0.372 if (3.39) is assumed [79]. It was mentioned above that all this hold for
qγ = q, i.e. for the assumed value N = 10. The value for q can be obtained according to
the requirements: Vγ > 0 and Pγ > 0. It is very easy to show that the allowed intervals are:
ql < 0.98 for g = 0 and g = 0.1, ql < 0.94 for g = 0.2 and ql < 0.86 for g = 0.3. This means
that N = 10 may be the good choice again.

Finally, (3.48) should be solved numerically and yn(t) can be obtained [79]. It was shown
that viscosity destroys modulation which has very important biological implication. Namely,
the DNA-RNA transcription is efficient if the maximum of yn(t) is big enough and if the
interaction time between the nucleotides belonging to DNA and to RNAP lasts as long as
possible. Of course, this time is bigger if the frequency is smaller and is the biggest possible
for the demodulated wave [79]. In other words, the modulated wave shown in Fig. 8 moves
through the DNA chain. When it reaches the segment where the chain is surrounded by
RNAP viscosity, coming from RNAP itself, drastically changes DNA dynamics. The soli-
tonic wave becomes demodulated which ensures long enough period of interaction between
bases belonging to DNA and RNAP which brings about the DNA-RNA transcription. Of
course, when the soliton passes this segment it becomes the modulated wave again [79].

Also, viscosity decreases the amplitude, which is something that one could expect. It
is much more important that the amplitude of the demodulated signal is almost constant
[79]. This certainly indicates post demodulation stability which is obviously suitable for the
process of transcription.
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4. Concluding Remarks

In this paper one of the nonlinear models describing DNA dynamics is explained. The basic
equation is NLSE. We should keep in mind that the solution explained in this paper is not
the only choice. For example, it is possible to express its solution using Jacobian elliptic
functions. However, a recent comparison of the two approaches favors the one explained in
this paper [80].

Also, viscosity can be introduced in a different way. In the treatment explained above the
viscous force was considered as competitive with other forces arising from the Hamiltonian.
However, there is an alternative approach where Fv = −ε γẏn was introduced, which means
that the viscous force has features of small perturbation. We refer them as “big” and “small”
viscosities [39].

A patient reader might ask why the parameter ε exists in the time scaling in (3.26)
and (3.46) but is not present in the space scaling. It was pointed out that the carrier
component of the function (3.10) changes faster then the envelope functions Fi. This means
that the small parameter ε is present only in the envelope components Fi and this is why
the scaling (3.12) was introduced. On the other hand, the definition (3.26) ensures that the
time variation of the envelope of the function F1, in units 1/ω, be smaller then its space
variation in units l [81].

A key question in many branches of physics is quantum vs. classical treatment. The
author gave a small contribution to this problem showing a possible advantage of the clas-
sical approach in nonlinear DNA dynamics [82].

Finally, a role of temperature should be discussed. Obviously, temperature variations
were not taken into consideration in this paper. This does not mean that the HPB model
neglects the influence of temperature on DNA dynamics. It is explained [33] that a mean
value 〈y〉 is temperature dependent but yn(t) is not. Also, a physiological temperature, i.e.
natural biological environment of DNA, was assumed. This means that the temperature
variations are very small.
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Bishop–Dauxois model of DNA dynamics, J. Comput. Theor. Nanosci. 1 (2004) 171–181.

[42] T. Dauxois and M. Peyrard, Physics of Solitons (Cambridge University Press, Cambridge, UK
2006).
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[74] S. Zdravković and M. V. Satarić, Resonance mode in DNA dynamics, Europhys. Lett. 80 (2007)

38003 (6 pages).
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