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Abstract: An expression for the chain length probability distribution p(l) of a one dimensional Ising chain was
derived using the cluster variation method formalism, the p(l) being expressed through the pair cluster
probabilities. It was shown numerically that the same expression also applies in the case of one dimen-
sional chains formed along one of the next-nearest neighbor interactions included in the two dimensional
ASYNNNI (Asymmetric Next-Nearest Neighbor Ising) model, widely used to describe the statistics of
oxygen ordering in the basal CuOx planes of the YBa2Cu3O6+x type high-Tc superconducting materials.
Equivalency between ASYNNNI and 1d Ising model is discussed.
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1. Introduction

It is well known that the oxygen concentration, x, playsa significant role in determining the superconductingand structural properties of the high Tc superconduc-tor, YBa2Cu3O6+x (YBCO). Soon after the discovery ofYBa2Cu3O6+x it was established that when the oxygencontent exceeds x = 0.35, the oxygen atoms in the basalCuOx planes (also referred as the chain plane) tend toarrange into Cu-O chains of different lengths [1] alignedalong one of the crystallographic axes, usually taken tobe the b axis. This chain formation initiates a structuralphase transition from a disordered tetragonal state to an
∗E-mail: mikac@vin.bg.ac.yu

orthorhombic structural phase. The existence of five differ-ent orthorhombic phases has been established experimen-tally. The five orthorhombic phases are characterized byboth differences in the way that sequences of Cu-O chainsare arranged along the a axis, and differences in the unitcell periods [2]. The fact that only orthorhombic samplesare superconducting, led to the conclusion that the forma-tion of Cu-O chains is crucial for the hole doping of thesuperconducting CuO2 planes which causes the supercon-ducting behavior in YBCO [3, 4]. Since the YBCO materialbecomes superconducting only after a certain oxygen sto-ichiometry is achieved, it was assumed that this coincideswith oxygen chains reaching some critical length lcr . Thetheory of critical chain length and the microscopic prop-erties of the chain fragments were investigated in severaltheoretical studies [5–9]. The general conclusion of thesestudies was that only chains longer than a critical length,
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whose value was argued [8, 10] to be 3 or 4, can transfercharge out of the basal planes, thus providing the increasein the number of the mobile charge carriers in the CuO2sheets which leads to the appearance of superconductivity[11].One of the first theoretical models proposed for the studyof oxygen ordering in the basal planes of YBCO wasthe twodimensional Ising model with asymmetric interac-tions of next nearest neighbors (ASYNNNI model). TheASYNNNI model was originally developed by de Fontaine
et al. [12] and, at the time, adequately described all themain features of the structural phase diagram and cor-rectly predicted the order of the phase transitions. How-ever, the model failed to stabilize other than the OrthoI and Ortho II (Fig. 1) orthorhombic structural phases.Though attempts have been made to extend the model inorder to include other experimentally observed structures[13–16], the plain ASYNNNI model has remained the mostwidely used model for the investigation of the thermody-namics of oxygen ordering in the CuOx planes.Recently, the plain ASYNNNI model has been employedin extensive studies of the properties of the distribution ofthe CuO chains with respect to chain length [17, 18]. It wasfound that the chain length probability distribution satis-fies the simple geometrical law [17] i.e. that the distribu-tion is determined by only one parameter. This parameteris the average chain length, lav , for a given oxygen sub-lattice and is experimentally measurable. This result wasderived, in the case of low temperatures, by studying thestructure of low energy levels and was confirmed in MonteCarlo numerical simulations for Ortho I and II structuralphases. The result was confirmed for the Ortho II struc-tural phase at a temperature of T ≈ 450 K, where T isthe oxygen equilibrium temperature [18], and in the case ofthe Ortho I phase for temperatures as high as T ≈ 1800K [17]. Furthermore, it was concluded that this specificform of the chain probability distribution should be validfor all oxygen concentrations, and all temperatures wherethe orthorhombic structures are stable, except in the closevicinity of the line of the critical points [18]. Since thesame geometric chain length probability distribution alsoapplies in the case of the infinite one dimensional Isingmodel [19, 20], the conclusion was made that the resultobtained is another manifestation of the previously estab-lished low temperature equivalence between ASYNNNIand 1d Ising model, in which the role of the Ising chainNN coupling J is played by the NNN interaction V2 ofthe ASYNNNI model [21].In this work we will use the cluster variation method(CVM) formalism, to show that the chain length probabil-ity distribution p(l) of the 1d Ising model can be expressedthrough the pair cluster probabilities xi (i denotes one of

Figure 1. Arrangement of oxygen atoms in the basal planes of
YBa2Cu3O6+x material in a) OrthoII and b) OrthoI struc-
tural phases, with the interactions of the ASYNNNI model
shown. Small, black circles denote Cu atoms while the
big circles represent the oxygen sites: shaded circle -
site occupied by an oxygen atom; empty circle - unoccu-
pied.

the possible cluster microstates), and that the expressionobtained is equivalent to the one found in Ref. [17]. forthe chain length probability distribution of Cu-O chainsformed in the basal planes of YBCO material, studied inthe frame of the ASYNNNI model. We will also showthat in the case of the ASYNNNI model, the same chainlength probability distribution applies along both of thenext-nearest neighbor interactions present in the model.
2. Chain length probability distribu-
tion

The cluster variation method is an approximate numer-ical method originally proposed by Kikuchi [22] for thecalculation of phase diagrams of alloys. It has been refor-mulated several times which has enabled both its wider
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application [23–28], and contributed to an improved under-standing of the method itself. Though the method yieldsmean field critical exponents, it is able to predict the val-ues of the critical transition temperatures very accurately.While the 1d Ising model can be treated exactly withinthe CVM formalism, in the 2D and 3D cases this methodgives approximate results with an accuracy that is depen-dant on the size of the basic cluster. It has been shownthat the approximate results obtained by the CVM methodtend to the exact results as the size of the basic clusterincreases [29].

Figure 2. Chain fragment of length l contained in the 1d Ising
chain, and the microstates of the pair cluster with cor-
responding probabilities and state degeneracies.

In the simple case of the ordinary 1d Ising model, whichcan be represented by an infinite Ising chain consisting ofspins coupled by the nearest neighbor exchange interac-tions, it is sufficient to choose a pair of spins as a basiccluster for the CVM implementation. Possible microstatesof the pair cluster and the corresponding probabilities andstate degeneracies are shown at Fig. 2. We shall considerthe full chain fragment of length l, within the infinite Isingchain, to consist of the sequence of l “up” spins,σi = +1,(analogous to the l sites occupied by an oxygen atom inthe case of the CuOx lattice), with end sites having “down”spins, σi = −1, (analogous to unoccupied sites of the lat-tice) as neighbours. The probability distribution of thefull chain fragment can be constructed using the itera-tive procedure presented in the work of Vinograd et al.[30, 31]. This procedure allows the probabilities of chainfragments of any length to be calculated as a functionof pair and point cluster microstate probabilities. Applingthis procedure, and employing the fact that the point clus-ter probabilities can be expressed through the pair clusterprobabilities, the probability of a full chain fragment hav-ing length l (0 < l) can be written as a function of thepair cluster probabilities x1 and x2:
p(l) = x2 x1

x1 + x2
x1

x1 + x2 · · ·
x1

x1 + x2
x2

x1 + x2 =
= x22
x1
(

x1
x1 + x2

)l . (1)

Since we want these probabilities to fall between zeroand 1 we normalize them according to the following nor-malizing condition: ∑
l

p(l) = 1. (2)
Thus, we finally obtain true chain length probabilities:

p(l) = x2
x1 + x2

(
x1

x1 + x2
)l−1

. (3)
These normalized probabilities represent the fraction ofthe chains having length l:

p(l) = n(l)∑
k
n(k) , (4)

where n(l) is the number of chain fragments of length, l,and ∑k n(k) is the total number of chain fragments in thesystem. Let us denote c, the concentration of up (+1) spins(or oxygen atoms in the case of the basal plane lattice ofYBCO material) in the chain, and let n be the fraction ofoxygen atoms situated at the end of the full chain frag-ment. These two variables can be expressed through thepair cluster configuration probabilities as follows:
c = x1 + x2, n = 2x2. (5)

Since every full chain fragment has two atoms residing atthe chain ends, the total number of chain fragments willbe proportional to half the number of the chain ends. Thusthe following expression for the average chain length canbe written:
lav = 2c

n = x1 + x2
x2 . (6)

After few manipulations the chain probability p(l) can beexpressed, as a function of c and T , through a single pa-rameter, the average chain length lav (c, T ):
p(l) = (1− lav )l−1

llav
. (7)

which is exactly the expression for the chain probabilitydistribution which was shown in Ref. [17] to be valid forthe ASYNNNI model at low temperatures.Using expression (3) and the definition of the cluster mi-crostate probabilities in the cluster variation method [32]:
xl,i = 1

Zl
exp(−El.i/kBT ), (8)

313

Unauthenticated
Download Date | 3/8/18 2:36 PM



Chain length probability distribution – equivalence of ASYNNNI and 1D Ising model

Figure 3. Values of the chain length probabilities p(l) as a function of chain lengths l along V3 bonds of the ASYNNNI model presented for two
different concentrations c in the range of OrthoI structural phase at τ = 0.45 ≈450 K. Solid squares are points obtained by the MC
numerical simulations while the open triangles represent results found using the CVM method and expression (3).

where El,i is the energy of the cluster l in its i-th clustermicrostate, and Zl is its partition function, the chain lengthprobability can be cast in the following form:
p(l) = r(1− r)l−1, (9)

where r = (1+eβ(E2−E1))−1, β = kBT . In the case of the 1dIsing model with ferromagnetic coupling J, we have E2 −
E1 = 2J with expression (9) being equal to the probabilitydistribution of the number of spins in the “up” domain inan infinite Ising chain as reported in Ref. [19].
3. Numerical simulations and dis-
cussion
In the previous section the chain length probability dis-tribution of the 1d Ising chain was expressed through thepair cluster probabilities xi (i = 1, 2), the values of whichdetermine the microstate of the complete Ising chain. Wehave shown that expression (3) is equivalent to that usedin the ASYNNNI model for the probabilities, p(l), of theCu-O chains formed along V2 bonds. The equivalency ofthe two expressions is considered to be a consequence ofthe previously established isomorphism between this andthe 1d Ising model. However, the pair cluster probabili-ties, which are to be used in expression (3) to calculate

the chain fragment probabilities of the ASYNNNI modelformed along V2 bonds, are not the same as those ob-tained from the simple pair approximation of the CVMmethod when applied to the 1d Ising chain coupled by V2interaction. Instead, when expression (3) is applied to theASYNNNI model, the probabilities x1 and x2 are taken asthe equilibrium cluster probabilities within some higherorder CVM approximation appropriate for the ASYNNNImodel investigation. This higher order approximation willcertainly include basic clusters much larger than the pairclusters sufficient to treat the 1d Ising model. As a re-sult, the pair cluster probabilities will include informationon the influence that the surrounding spins have on theinteraction of two spins incorporated in the chain. Thus,in terms of the chain length probabilities, the ASYNNNImodel can be considered, equivalent to the 1d Ising modelin which spins are coupled by some effective pair interac-tion which incorporates the effect of the surrounding siteson the interaction energy of the spin pair considered, aswell as the bare pair spin interaction of the ASYNNNImodel. This equivalency can be assumed to exist alongeach of the two next-nearest neighbour pair interactionsincluded in the ASYNNNI model, but it is more evidentalong the attractive V2 interaction which induces the for-mation of long chain fragments.It is also important to note that, from expression (6) and thedefinition of the variable r, we can derive the relationship,
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Figure 4. Dependence of the chain length probabilities p(l) on the chain lengths l obtained by MC (solid squares) and CVM (open triangles)
showing the validity of expression (3) at high temperatures a) and in the disordered tetragonal structural phase b).

lav = 1/r. Since the variable r is, in the case of the 1dIsing chain with ferromagnetic interaction J > 0, boundedfrom above by 1/2, it follows that the ASYNNNI model canbe considered equivalent to the ferromagnetically coupledIsing model only when the condition lav > 2 is met.To prove the validity of expression (3) for the ASYNNNImodel, the chain length probability distribution, p(l), wascalculated by using the cluster variation method (4,5-points cluster approximation) and expression (3), and thencompared with the value of p(l) calculated directly inMonte Carlo simulations of the ASSYNNI model (apply-ing the standard Metropolis algorithm). The Hamiltonianof the ASYNNNI model can be expressed by the followingequation:
H = −µ∑

i
σi + V1∑

NN

σiσj + V2 ∑
NNN′

σiσj + V3 ∑
NNN

σiσj ,(10)where σ i is the Ising spin, which can take the value +1 or
−1 depending on the site, i occupancies, µ is the chem-ical potential representing external field, and V1, V2 and
V3 are the model interactions (see Fig. 1): V1 and V3 arerepulsive, while V2 is attractive. The first sum goes overall sites and second one is taken over all nearest neigh-bours. The third summation is performed over all nextnearest neighbour sites along V2 bond, while the last oneis calculated over next nearest neighbours coupled via V3interaction. The values of the interaction parameters used

were those obtained by Sterne and Wille from the firstprinciple calculations using the linear-muffin-tin orbitalmethod: V1= 6.9 mRy ,V2= -2.4 mRy and V3= 1.1 mRy[33]. In order to determine the probabilities, p(l), the num-ber of chains of length l, and total number of chains werecalculated for every lattice microstate generated in everyaccepted Monte Carlo step of the simulation; the maximalchain length was determined by the size of the system.
The results of the numerical simulations are presentedin Fig. 3. The figure shows the probability distributionof chains extending along V3 interactions as a functionof chain length l calculated at the reduced temperature
τ = kBT/V1 = 0.45 (T ≈ 450 K). Results are shownfor two different oxygen concentrations c (x = 2c) in therange of the Ortho I structural phase of the YBa2Cu3O6+xmaterial. Though some discrepancies are present for theshortest chains, it can be seen that the results obtainedfrom Monte Carlo simulations performed on a system of200 x 200 spins are in excellent agreement with those ob-tained using the 4,5-points cluster approximation of theCVM method employing the expression (3). Monte Carlonumerical simulations were also performed at higher tem-peratures, up to 2000 K in the range of the Ortho I struc-tural phase (Fig. 4a); once again the results showed excel-lent agreement with those obtained by the CVM method.Furthermore, relation (3) was also found to be valid inthe disordered tetragonal phase, though in this structural
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phase the chains become rather short (Fig. 4b).
4. Conclusion
In this study the chain length probabilities of the 1d Isingmodel were expressed through the pair cluster probabil-ities. The same expression was used to calculate chainlength probabilities in the frame of the 2d ASYNNNImodel, and the results are compared to those obtained bynumerical Monte Carlo simulations. It was argued thatthe ASYNNNI model can be considered equivalent to a1d Ising model in which the coupling is modeled as a paircluster interaction with a spin pair interaction energy thatincludes a contribution from both the interaction betweennearest neighbour spins, and the interaction of surround-ing spins with the spin pair. In general, the equivalencyof the two models can be assumed to exist along any ofthe next-nearest neighbor pair interactions included in theASYNNNI model, however, when the ASYNNNI model isapplied to the problem of oxygen ordering in the basalplanes of YBa2Cu3O6+x material, it is most evident alongthe direction of Cu-O chain formation, i.e. along the V2coupling.
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