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Abstract

The most common genetic variations in humans are Single Nu-
cleotide Polymorphisms (SNPs), so predicting their associations
with cancers is a signicant issue. Here, we were particularly in-
terested in SNPs occurring outside protein Conserved Domains
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(CDs) of TET2, a recently discovered epigenetic regulator in-
volved in leukemogenesis. Functional eects of TET2 gene varia-
tions were assessed with four publicly available tools: PhD-SNP,
MutPred, PolyPhen-2 and SIFT. The methods were tested on
the dataset of 166 SNPs and somatic TET2 mutations, and sepa-
rately on the subset of 69 variations outside TET2 CDs. Abilities
of tested tools to separate neutral SNPs from pathogenic mu-
tations were similar to previously reported on complete TET2
dataset. However, we observed signicantly lower accuracy of
predictions outside CDs, ranging from 0.54 to 0.62. Also, areas
under the ROC curves were low, 0.51-0.55. Correlations between
predictions and positions of variations inside/outside CDs were
signicant and high, 0.46-0.78. Low eciency of commonly used
tools in predicting functional eects of variations outside CDs
emphasize the need for new or modied algorithms.

1 Introduction
The most frequent human genetic variations are SNPs, of which an impor-
tant subset contains SNPs resulting in the amino acid substitutions (AAS).
These mutations play one of the most important roles in cancer transfor-
mation [1, 2]. A number of tools have been developed to computationally
predict which AAS have relevant phenotypic eect [for review see 3]. In
this study we evaluated four widely used tools PhD-SNP [4], MutPred [5],
PolyPhen-2 [6] and SIFT [7]. The stated tools use dierent protein features
for predicting pathogenic eects of AAS. SIFT uses only evolutionary infor-
mation, PhD-SNP combines it with sequence properties, while PolyPhen-2
and MutPred use a number of structural and functional data, in addition.

Several previous studies showed that more than 50% of cancer-associated
mutations are positioned outside CDs [8, 9]. Also, extensive analysis of
mutations in the important cancer-associated protein family, protein ki-
nases, showed that numerous driver mutations are not in the kinase do-
mains [10]. Nonetheless, performance evaluation of prediction tools has
never been specically focused on the eects of variations outside protein
CDs.

TET2 is epigenetic regulator acting as an enzyme, normally converting
5-methylcytosine to 5-hydroxymethylcytosine in DNA [11]. It has been fre-
quently mutated in all types of myeloid malignancies [12]. TET2 mutations
predispose hematopoietic stem cells towards uncontrolled self-renewal and
consequently development of myeloid malignancies [13, 14]. Even more,
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mutations in TET2 are prognostic markers in acute myeloid leukemia [15]
and play a role in leukemia transformation [16]. Having two well dened
CDs and numerous AAS identied along entire sequence, TET2 represents
a good candidate gene for pilot testing on the ability of published compu-
tational tools to discriminate between neutral SNPs and pathogenic muta-
tions outside CDs.

2 Materials and Methods

Missense variations in TET2 gene were collected from literature, COSMIC
[17] and dbSNP database [18].To label an AAS as a mutation, besides
its association with a myeloid malignancy, we looked in original papers
for evidence of its somatic nature. There were two criteria to label an
AAS as a SNP: rst included evidence in original papers of its presence in
germline and the second implied described frequency of the polymorphism
in healthy population. All-TET2 dataset contained 166 TET2 variations,
of which 121 were mutations associated with myeloid malignancies. Also,
we constructed a sub-dataset nCD-TET2 from all-TET2 that contained 69
variations outside TET2 CDs, 42 neutral SNPs and 27 mutations. TET2
CDs and non CD regions were determined from the relevant literature [19].

The pathogenicity of TET2 variations were predicted by the tools PhD-
SNP [4], MutPred [5], PolyPhen-2 [6] and SIFT [7]. For all tools, we applied
default parameters. Contrary to other three tools, PhD-SNP does not give
probability scores as a result, so all statistical analyses for this method was
done solely on the predictions. PolyPhen-2 and MutPred provide proba-
bility scores for a hypothesis that a variation is a damaging mutation and
score of 0.5 was used as a predictions threshold. In the case of SIFT, varia-
tion is predicted to be a damaging mutation if the probability score is less
than 0.05.

The performance of the four tools was assessed by three parameters:
accuracy, sensitivity and specicity. For the additional evaluation of pre-
diction tools, we constructed receiver operating characteristic (ROC) curves
for both probability scores, where applicable, and predictions. The param-
eter used was area under the curve (AUC). Correlations between the pre-
dictions of tools and position of the variations inside/outside TET2 CDs
were calculated using Spearman’s rank correlation coecients. For the de-
termination of the signicance of the results, we used chi-square test. The
p-values were estimated in a two-tailed fashion. The signicance threshold
was p-value  0.01.
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3 Results and Discussion

First, we evaluated the performance of PhD-SNP, MutPred, PolyPhen-2
and SIFT in predicting the pathogenicity of missense variants positioned
outside TET2 CDs (Table 1). Although accuracies of PhD-SNP and Mut-
Pred were somewhat higher than accuracies of PolyPhen-2 and SIFT, the
sensitivity and specicity of these tools were quite

nCD-TET2 dataset all-TET2 dataset
Accuracy Sensitivity Specicity Accuracy Sensitivity Specicity

PhD-SNP 0.61 0.04 0.98 0.75 0.67 0.98
MutPred 0.62 0.04 1.00 0.52 0.34 1.00

PolyPhen-2 0.54 0.37 0.64 0.78 0.83 0.62
SIFT 0.55 0.52 0.57 0.78 0.85 0.58

unbalanced. So, we used AUC as additional measure of the performance of
these four tools (Fig.1A). PhD-SNP, PolyPhen-2 and SIFT had extremely
low AUC values ranging from 0.55 to 0.59 for probability scores and 0.51-
0.55 for predictions. MutPred showed high discrepancy between AUC val-
ues of its probability scores (AUC=0.68) and predictions (AUC=0.52). This
implies that predictions threshold of 0.5, suggested by authors, doesn’t rep-
resent the optimal value for this particular dataset. But, although higher
than for other three tools, performance of MutPred, still, cannot be con-
sidered satisfactory.

The accuracy of tested tools predicting pathogenicity of myeloid
malignancies-associated variations positioned outside TET2 CDs was shown
to be much lower than in the case of more comprehensive datasets, con-
taining mutations not restricted to nCD-regions and originating from var-
ious diseases [20, 21]. So, we tested if our ndings are specic for the
TET2 variations, by evaluating the same tools on the complete all-TET2
dataset. As can be observed from Table 1, PhD-SNP, PolyPhen-2 and
SIFT performances were in accordance with previously mentioned studies.
Of note, MutPred prediction capacity on the all-TET2 dataset was sig-
nicantly lower than reported by Thusberg et al. [20] and Li et al. [5].
We are speculating that this is, again, on the account of the predened
prediction threshold which is not appropriate, similarly to the nCD-TET2
dataset. Nevertheless, dierences in AUC values for all tested tools be-
tween all-TET2 and nCD-TET2 datasets (Fig.1B), also, reect decrease of
their performance when dataset contains only variations outside CDs.
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Figure 1: ROC analysis of PhD-SNP, MutPred, PolyPhen-2 and SIFT
predictions of pathogenicity of nCD-TET2 variations. A ROC curves for
probability scores and predictions (only predictions were available for PhD-
SNP); B Dierence between AUC values of predictions on all-TET2 and
nCD-TET2 datasets

All tested tools base their predictions on the conservation of the amino
acid position in a sequence, so we assumed that their predictions correlate
signicantly with the position of AAS in TET2 sequence, i.e. whether it is
placed in the CD or not. To test this, we compared, pairwise, predictions of
each tool and positions of variations in the CD/nCD (Table 2) and observed
signicant correlations (p  0.001).

PhD-SNP MutPred PolyPhen-2 SIFT
CD/nCD 0.78 0.46 0.65 0.52

Together, our results suggest that tested tools tend to use information
about the position of variation in the protein CDs to annotate this variation
as a mutation. On TET2 example, this is reected by the accuracy of 0.95 of
PolyPhen-2 and SIFT when we tested variations placed inside CDs (data
not shown). But, tendency of these tools to annotate variations outside
CDs as neutral SNPs can result in high number of false negatives and this
can be the reason for the poor performance on our nCD-TET2 dataset.

In this pilot study, we intended to emphasize the importance of consid-
ering the information other than evolutionary in computational tools that
predict disease related mutations in complex diseases.
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