VinaR - Repository of the Vinča Nuclear Institute
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   Vinar
  • Vinča
  • Radovi istraživača
  • View Item
  •   Vinar
  • Vinča
  • Radovi istraživača
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

TEA CO2 Laser – Polymethyl Methacrylate Interaction: LIBS Hydrogen Analysis

Authorized Users Only
2022
Authors
Trtica, Milan
Kuzmanović, Miroslav M.
Savović, Jelena
Ranković, Dragan
Article (Published version)
Metadata
Show full item record
Abstract
The interaction of a Transversely Excited Atmospheric (TEA) CO2 laser with a polymer polymethyl methacrylate (PMMA) sample in a vacuum ambiance was studied. The main goal was to demonstrate the feasibility of laser-induced breakdown spectroscopy (LIBS) to detect hydrogen. The generation of plasma over the PMMA surface, using a low laser intensity of ∼ 48 MW/cm2 and fluence of ∼ 16.5 J/cm2, required the application of a metal sub-target. Besides hydrogen, the recorded spectra were dominated by atomic lines of carbon and oxygen and band emission of the C2 and CN molecules. The electron number density and temperature (ionic, vibrational, and rotational) were evaluated to characterize the laser-induced plasma. In addition, PMMA micro-damages (diameter ∼ 45 µm) created by a multipulse laser ablation could find potential applications in sensor technologies.
Keywords:
Hydrogen detection / Laser-induced breakdown spectroscopy (LIBS) / Plasma diagnostics / Polymethyl methacrylate (PMMA)
Source:
Applied Surface Science, 2022, 572, 151424-
Funding / projects:
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200017 (University of Belgrade, Institute of Nuclear Sciences 'Vinča', Belgrade-Vinča) (RS-200017)
  • IAEA - “Contemporary and New IF Structural-First Wall Materials: Conditions of High Thermal and Electromagnetic Fluxes“ [24076]

DOI: 10.1016/j.apsusc.2021.151424

ISSN: 0169-4332

WoS: 000728390900002

Scopus: 2-s2.0-85116527433
[ Google Scholar ]
URI
https://vinar.vin.bg.ac.rs/handle/123456789/9972
Collections
  • Radovi istraživača
Institution/Community
Vinča
TY  - JOUR
AU  - Trtica, Milan
AU  - Kuzmanović, Miroslav M.
AU  - Savović, Jelena
AU  - Ranković, Dragan
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9972
AB  - The interaction of a Transversely Excited Atmospheric (TEA) CO2 laser with a polymer polymethyl methacrylate (PMMA) sample in a vacuum ambiance was studied. The main goal was to demonstrate the feasibility of laser-induced breakdown spectroscopy (LIBS) to detect hydrogen. The generation of plasma over the PMMA surface, using a low laser intensity of ∼ 48 MW/cm2 and fluence of ∼ 16.5 J/cm2, required the application of a metal sub-target. Besides hydrogen, the recorded spectra were dominated by atomic lines of carbon and oxygen and band emission of the C2 and CN molecules. The electron number density and temperature (ionic, vibrational, and rotational) were evaluated to characterize the laser-induced plasma. In addition, PMMA micro-damages (diameter ∼ 45 µm) created by a multipulse laser ablation could find potential applications in sensor technologies.
T2  - Applied Surface Science
T1  - TEA CO2 Laser – Polymethyl Methacrylate Interaction: LIBS Hydrogen Analysis
VL  - 572
SP  - 151424
DO  - 10.1016/j.apsusc.2021.151424
ER  - 
@article{
author = "Trtica, Milan and Kuzmanović, Miroslav M. and Savović, Jelena and Ranković, Dragan",
year = "2022",
abstract = "The interaction of a Transversely Excited Atmospheric (TEA) CO2 laser with a polymer polymethyl methacrylate (PMMA) sample in a vacuum ambiance was studied. The main goal was to demonstrate the feasibility of laser-induced breakdown spectroscopy (LIBS) to detect hydrogen. The generation of plasma over the PMMA surface, using a low laser intensity of ∼ 48 MW/cm2 and fluence of ∼ 16.5 J/cm2, required the application of a metal sub-target. Besides hydrogen, the recorded spectra were dominated by atomic lines of carbon and oxygen and band emission of the C2 and CN molecules. The electron number density and temperature (ionic, vibrational, and rotational) were evaluated to characterize the laser-induced plasma. In addition, PMMA micro-damages (diameter ∼ 45 µm) created by a multipulse laser ablation could find potential applications in sensor technologies.",
journal = "Applied Surface Science",
title = "TEA CO2 Laser – Polymethyl Methacrylate Interaction: LIBS Hydrogen Analysis",
volume = "572",
pages = "151424",
doi = "10.1016/j.apsusc.2021.151424"
}
Trtica, M., Kuzmanović, M. M., Savović, J.,& Ranković, D.. (2022). TEA CO2 Laser – Polymethyl Methacrylate Interaction: LIBS Hydrogen Analysis. in Applied Surface Science, 572, 151424.
https://doi.org/10.1016/j.apsusc.2021.151424
Trtica M, Kuzmanović MM, Savović J, Ranković D. TEA CO2 Laser – Polymethyl Methacrylate Interaction: LIBS Hydrogen Analysis. in Applied Surface Science. 2022;572:151424.
doi:10.1016/j.apsusc.2021.151424 .
Trtica, Milan, Kuzmanović, Miroslav M., Savović, Jelena, Ranković, Dragan, "TEA CO2 Laser – Polymethyl Methacrylate Interaction: LIBS Hydrogen Analysis" in Applied Surface Science, 572 (2022):151424,
https://doi.org/10.1016/j.apsusc.2021.151424 . .

DSpace software copyright © 2002-2015  DuraSpace
About the VinaR Repository | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About the VinaR Repository | Send Feedback

OpenAIRERCUB