VinaR - Repository of the Vinča Nuclear Institute
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   Vinar
  • Vinča
  • Radovi istraživača
  • View Item
  •   Vinar
  • Vinča
  • Radovi istraživača
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Controlled killing of human cervical cancer cells by combined action of blue light and C-doped TiO2 nanoparticles

Authorized Users Only
2021
Authors
Matijević, Milica
Žakula, Jelena
Korićanac, Lela
Radoičić, Marija B.
Liang, Xinyue
Mi, Lan
Filipović Tričković, Jelena G.
Valenta-Šobot, Ana
Stanković, Maja N.
Nakarada, Đura
Mojović, Miloš
Petković, Marijana
Stepić, Milutin
Nešić, Maja D.
Article (Published version)
Metadata
Show full item record
Abstract
In this study, C-doped TiO2 nanoparticles (C-TiO2) were prepared and tested as a photosensitizer for visible-light-driven photodynamic therapy against cervical cancer cells (HeLa). X-ray diffraction and Transmission Electron Microscopy confirmed the anatase form of nanoparticles, spherical shape, and size distribution from 5 to 15 nm. Ultraviolet–visible light spectroscopy showed that C doping of TiO2 enhances the optical absorption in the visible light range caused by a bandgap narrowing. The photo-cytotoxic activity of C-TiO2 was investigated in vitro against HeLa cells. The lack of dark cytotoxicity indicates good biocompatibility of C-TiO2. In contrast, a combination with blue light significantly reduced the survival of HeLa cells: illumination only decreased cell viability by 30% (15 min of illumination, 120 µW power), and 60% when HeLa cells were preincubated with C-TiO2. We have also confirmed blue light-induced C-TiO2-catalyzed generation of reactive oxygen species in vitro and... intracellularly. Oxidative stress triggered by C-TiO2/blue light was the leading cause of HeLa cell death. Fluorescent labeling of treated HeLa cells showed distinct morphological changes after the C-TiO2/blue light treatment. Unlike blue light illumination, which caused the appearance of large necrotic cells with deformed nuclei, cytoplasm swelling, and membrane blebbing, a combination of C-TiO2/blue light leads to controlled cell death, thus providing a better outcome of local anticancer therapy.

Source:
Photochemical & Photobiological Sciences, 2021, 20, 8, 1087-1098
Funding / projects:
  • Ministry of Education, Science and Technological Development of the Republic of Serbia
  • Serbian-Chinese bilateral project [451–00-478/2018–09/16, SINO-SERBIA2018002]

DOI: 10.1007/s43630-021-00082-2

ISSN: 1474-9092

PubMed: 34398442

WoS: 000685367800001

Scopus: 2-s2.0-85112557363
[ Google Scholar ]
URI
https://vinar.vin.bg.ac.rs/handle/123456789/9908
Collections
  • Radovi istraživača
Institution/Community
Vinča
TY  - JOUR
AU  - Matijević, Milica
AU  - Žakula, Jelena
AU  - Korićanac, Lela
AU  - Radoičić, Marija B.
AU  - Liang, Xinyue
AU  - Mi, Lan
AU  - Filipović Tričković, Jelena G.
AU  - Valenta-Šobot, Ana
AU  - Stanković, Maja N.
AU  - Nakarada, Đura
AU  - Mojović, Miloš
AU  - Petković, Marijana
AU  - Stepić, Milutin
AU  - Nešić, Maja D.
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9908
AB  - In this study, C-doped TiO2 nanoparticles (C-TiO2) were prepared and tested as a photosensitizer for visible-light-driven photodynamic therapy against cervical cancer cells (HeLa). X-ray diffraction and Transmission Electron Microscopy confirmed the anatase form of nanoparticles, spherical shape, and size distribution from 5 to 15 nm. Ultraviolet–visible light spectroscopy showed that C doping of TiO2 enhances the optical absorption in the visible light range caused by a bandgap narrowing. The photo-cytotoxic activity of C-TiO2 was investigated in vitro against HeLa cells. The lack of dark cytotoxicity indicates good biocompatibility of C-TiO2. In contrast, a combination with blue light significantly reduced the survival of HeLa cells: illumination only decreased cell viability by 30% (15 min of illumination, 120 µW power), and 60% when HeLa cells were preincubated with C-TiO2. We have also confirmed blue light-induced C-TiO2-catalyzed generation of reactive oxygen species in vitro and intracellularly. Oxidative stress triggered by C-TiO2/blue light was the leading cause of HeLa cell death. Fluorescent labeling of treated HeLa cells showed distinct morphological changes after the C-TiO2/blue light treatment. Unlike blue light illumination, which caused the appearance of large necrotic cells with deformed nuclei, cytoplasm swelling, and membrane blebbing, a combination of C-TiO2/blue light leads to controlled cell death, thus providing a better outcome of local anticancer therapy.
T2  - Photochemical & Photobiological Sciences
T1  - Controlled killing of human cervical cancer cells by combined action of blue light and C-doped TiO2 nanoparticles
VL  - 20
IS  - 8
SP  - 1087
EP  - 1098
DO  - 10.1007/s43630-021-00082-2
ER  - 
@article{
author = "Matijević, Milica and Žakula, Jelena and Korićanac, Lela and Radoičić, Marija B. and Liang, Xinyue and Mi, Lan and Filipović Tričković, Jelena G. and Valenta-Šobot, Ana and Stanković, Maja N. and Nakarada, Đura and Mojović, Miloš and Petković, Marijana and Stepić, Milutin and Nešić, Maja D.",
year = "2021",
abstract = "In this study, C-doped TiO2 nanoparticles (C-TiO2) were prepared and tested as a photosensitizer for visible-light-driven photodynamic therapy against cervical cancer cells (HeLa). X-ray diffraction and Transmission Electron Microscopy confirmed the anatase form of nanoparticles, spherical shape, and size distribution from 5 to 15 nm. Ultraviolet–visible light spectroscopy showed that C doping of TiO2 enhances the optical absorption in the visible light range caused by a bandgap narrowing. The photo-cytotoxic activity of C-TiO2 was investigated in vitro against HeLa cells. The lack of dark cytotoxicity indicates good biocompatibility of C-TiO2. In contrast, a combination with blue light significantly reduced the survival of HeLa cells: illumination only decreased cell viability by 30% (15 min of illumination, 120 µW power), and 60% when HeLa cells were preincubated with C-TiO2. We have also confirmed blue light-induced C-TiO2-catalyzed generation of reactive oxygen species in vitro and intracellularly. Oxidative stress triggered by C-TiO2/blue light was the leading cause of HeLa cell death. Fluorescent labeling of treated HeLa cells showed distinct morphological changes after the C-TiO2/blue light treatment. Unlike blue light illumination, which caused the appearance of large necrotic cells with deformed nuclei, cytoplasm swelling, and membrane blebbing, a combination of C-TiO2/blue light leads to controlled cell death, thus providing a better outcome of local anticancer therapy.",
journal = "Photochemical & Photobiological Sciences",
title = "Controlled killing of human cervical cancer cells by combined action of blue light and C-doped TiO2 nanoparticles",
volume = "20",
number = "8",
pages = "1087-1098",
doi = "10.1007/s43630-021-00082-2"
}
Matijević, M., Žakula, J., Korićanac, L., Radoičić, M. B., Liang, X., Mi, L., Filipović Tričković, J. G., Valenta-Šobot, A., Stanković, M. N., Nakarada, Đ., Mojović, M., Petković, M., Stepić, M.,& Nešić, M. D.. (2021). Controlled killing of human cervical cancer cells by combined action of blue light and C-doped TiO2 nanoparticles. in Photochemical & Photobiological Sciences, 20(8), 1087-1098.
https://doi.org/10.1007/s43630-021-00082-2
Matijević M, Žakula J, Korićanac L, Radoičić MB, Liang X, Mi L, Filipović Tričković JG, Valenta-Šobot A, Stanković MN, Nakarada Đ, Mojović M, Petković M, Stepić M, Nešić MD. Controlled killing of human cervical cancer cells by combined action of blue light and C-doped TiO2 nanoparticles. in Photochemical & Photobiological Sciences. 2021;20(8):1087-1098.
doi:10.1007/s43630-021-00082-2 .
Matijević, Milica, Žakula, Jelena, Korićanac, Lela, Radoičić, Marija B., Liang, Xinyue, Mi, Lan, Filipović Tričković, Jelena G., Valenta-Šobot, Ana, Stanković, Maja N., Nakarada, Đura, Mojović, Miloš, Petković, Marijana, Stepić, Milutin, Nešić, Maja D., "Controlled killing of human cervical cancer cells by combined action of blue light and C-doped TiO2 nanoparticles" in Photochemical & Photobiological Sciences, 20, no. 8 (2021):1087-1098,
https://doi.org/10.1007/s43630-021-00082-2 . .

DSpace software copyright © 2002-2015  DuraSpace
About the VinaR Repository | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About the VinaR Repository | Send Feedback

OpenAIRERCUB