VinaR - Repository of the Vinča Nuclear Institute
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   Vinar
  • Vinča
  • Radovi istraživača
  • View Item
  •   Vinar
  • Vinča
  • Radovi istraživača
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Facile synthesis of L-cysteine functionalized graphene quantum dots as a bioimaging and photosensitive agent

Thumbnail
2021
Main article [PDF] (3.624Mb)
Authors
Milenković, Mila
Mišović, Aleksandra
Jovanović, Dragana J.
Popović-Bijelić, Ana D.
Ciasca, Gabriele
Romanò, Sabrina
Bonasera, Aurelio
Mojsin, Marija
Pejić, Jelena
Stevanović, Milena
Jovanović, Svetlana P.
Article (Published version)
Metadata
Show full item record
Abstract
Nowadays, a larger number of aggressive and corrosive chemical reagents as well as toxic solvents are used to achieve structural modification and cleaning of the final products. These lead to the production of residual, waste chemicals, which are often reactive, cancerogenic, and toxic to the environment. This study shows a new approach to the modification of graphene quantum dots (GQDs) using gamma irradiation where the usage of reagents was avoided. We achieved the incorporation of S and N atoms in the GQD structure by selecting an aqueous solution of L-cysteine as an irradiation medium. GQDs were exposed to gamma-irradiation at doses of 25, 50 and 200 kGy. After irradiation, the optical, structural, and morphological properties, as well as the possibility of their use as an agent in bioimaging and photodynamic therapy, were studied. We measured an enhanced quantum yield of photoluminescence with the highest dose of 25 kGy (21.60%). Both S- and N-functional groups were detected in al...l gamma-irradiated GQDs: amino, amide, thiol, and thione. Spin trap electron paramagnetic resonance showed that GQDs irradiated with 25 kGy can generate singlet oxygen upon illumination. Bioimaging on HeLa cells showed the best visibility for cells treated with GQDs irradiated with 25 kGy, while cytotoxicity was not detected after treatment of HeLa cells with gamma-irradiated GQDs.

Keywords:
atomic force microscopy / bioimaging / gamma irradiation / graphene quantum dots / photodynamic therapy / photoluminescence
Source:
Nanomaterials, 2021, 11, 8, 1879-
Funding / projects:
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200017 (University of Belgrade, Institute of Nuclear Sciences 'Vinča', Belgrade-Vinča) (RS-200017)
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200042 (University of Belgrade, Institute of Molecular Genetics and Genetic Engineering) (RS-200042)
  • Biomarkers in neurodegenerative and malignant processes (RS-41005)
  • Italian Ministry of University and Research [CUP B78D19000280001]

DOI: 10.3390/nano11081879

ISSN: 2079-4991

PubMed: 34443709

WoS: 000690115800001

Scopus: 2-s2.0-85110612605
[ Google Scholar ]
2
2
URI
https://vinar.vin.bg.ac.rs/handle/123456789/9873
Collections
  • Radovi istraživača
Institution/Community
Vinča
TY  - JOUR
AU  - Milenković, Mila
AU  - Mišović, Aleksandra
AU  - Jovanović, Dragana J.
AU  - Popović-Bijelić, Ana D.
AU  - Ciasca, Gabriele
AU  - Romanò, Sabrina
AU  - Bonasera, Aurelio
AU  - Mojsin, Marija
AU  - Pejić, Jelena
AU  - Stevanović, Milena
AU  - Jovanović, Svetlana P.
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9873
AB  - Nowadays, a larger number of aggressive and corrosive chemical reagents as well as toxic solvents are used to achieve structural modification and cleaning of the final products. These lead to the production of residual, waste chemicals, which are often reactive, cancerogenic, and toxic to the environment. This study shows a new approach to the modification of graphene quantum dots (GQDs) using gamma irradiation where the usage of reagents was avoided. We achieved the incorporation of S and N atoms in the GQD structure by selecting an aqueous solution of L-cysteine as an irradiation medium. GQDs were exposed to gamma-irradiation at doses of 25, 50 and 200 kGy. After irradiation, the optical, structural, and morphological properties, as well as the possibility of their use as an agent in bioimaging and photodynamic therapy, were studied. We measured an enhanced quantum yield of photoluminescence with the highest dose of 25 kGy (21.60%). Both S- and N-functional groups were detected in all gamma-irradiated GQDs: amino, amide, thiol, and thione. Spin trap electron paramagnetic resonance showed that GQDs irradiated with 25 kGy can generate singlet oxygen upon illumination. Bioimaging on HeLa cells showed the best visibility for cells treated with GQDs irradiated with 25 kGy, while cytotoxicity was not detected after treatment of HeLa cells with gamma-irradiated GQDs.
T2  - Nanomaterials
T1  - Facile synthesis of L-cysteine functionalized graphene quantum dots as a bioimaging and photosensitive agent
VL  - 11
IS  - 8
SP  - 1879
DO  - 10.3390/nano11081879
ER  - 
@article{
author = "Milenković, Mila and Mišović, Aleksandra and Jovanović, Dragana J. and Popović-Bijelić, Ana D. and Ciasca, Gabriele and Romanò, Sabrina and Bonasera, Aurelio and Mojsin, Marija and Pejić, Jelena and Stevanović, Milena and Jovanović, Svetlana P.",
year = "2021",
abstract = "Nowadays, a larger number of aggressive and corrosive chemical reagents as well as toxic solvents are used to achieve structural modification and cleaning of the final products. These lead to the production of residual, waste chemicals, which are often reactive, cancerogenic, and toxic to the environment. This study shows a new approach to the modification of graphene quantum dots (GQDs) using gamma irradiation where the usage of reagents was avoided. We achieved the incorporation of S and N atoms in the GQD structure by selecting an aqueous solution of L-cysteine as an irradiation medium. GQDs were exposed to gamma-irradiation at doses of 25, 50 and 200 kGy. After irradiation, the optical, structural, and morphological properties, as well as the possibility of their use as an agent in bioimaging and photodynamic therapy, were studied. We measured an enhanced quantum yield of photoluminescence with the highest dose of 25 kGy (21.60%). Both S- and N-functional groups were detected in all gamma-irradiated GQDs: amino, amide, thiol, and thione. Spin trap electron paramagnetic resonance showed that GQDs irradiated with 25 kGy can generate singlet oxygen upon illumination. Bioimaging on HeLa cells showed the best visibility for cells treated with GQDs irradiated with 25 kGy, while cytotoxicity was not detected after treatment of HeLa cells with gamma-irradiated GQDs.",
journal = "Nanomaterials",
title = "Facile synthesis of L-cysteine functionalized graphene quantum dots as a bioimaging and photosensitive agent",
volume = "11",
number = "8",
pages = "1879",
doi = "10.3390/nano11081879"
}
Milenković, M., Mišović, A., Jovanović, D. J., Popović-Bijelić, A. D., Ciasca, G., Romanò, S., Bonasera, A., Mojsin, M., Pejić, J., Stevanović, M.,& Jovanović, S. P.. (2021). Facile synthesis of L-cysteine functionalized graphene quantum dots as a bioimaging and photosensitive agent. in Nanomaterials, 11(8), 1879.
https://doi.org/10.3390/nano11081879
Milenković M, Mišović A, Jovanović DJ, Popović-Bijelić AD, Ciasca G, Romanò S, Bonasera A, Mojsin M, Pejić J, Stevanović M, Jovanović SP. Facile synthesis of L-cysteine functionalized graphene quantum dots as a bioimaging and photosensitive agent. in Nanomaterials. 2021;11(8):1879.
doi:10.3390/nano11081879 .
Milenković, Mila, Mišović, Aleksandra, Jovanović, Dragana J., Popović-Bijelić, Ana D., Ciasca, Gabriele, Romanò, Sabrina, Bonasera, Aurelio, Mojsin, Marija, Pejić, Jelena, Stevanović, Milena, Jovanović, Svetlana P., "Facile synthesis of L-cysteine functionalized graphene quantum dots as a bioimaging and photosensitive agent" in Nanomaterials, 11, no. 8 (2021):1879,
https://doi.org/10.3390/nano11081879 . .

DSpace software copyright © 2002-2015  DuraSpace
About the VinaR Repository | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About the VinaR Repository | Send Feedback

OpenAIRERCUB