VinaR - Repository of the Vinča Nuclear Institute
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   Vinar
  • Vinča
  • Radovi istraživača
  • View Item
  •   Vinar
  • Vinča
  • Radovi istraživača
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Response of NIH 3T3 fibroblast cells on laser-induced periodic surface structures on a 15×(Ti/Zr)/Si multilayer system

Thumbnail
2020
Main article [PDF] (19.48Mb)
Authors
Petrović, Suzana
Peruško, Davor
Mimidis, Alexandros
Kavatzikidou, Paraskevi
Kovač, Janez
Ranella, Anthi
Novaković, Mirjana M.
Popović, Maja
Stratakis, Emmanuel
Article (Published version)
Metadata
Show full item record
Abstract
Ultrafast laser processing with the formation of periodic surface nanostructures on the 15×(Ti/Zr)/Si multilayers is studied in order to the improve cell response. A novel nanocomposite structure in the form of 15x(Ti/Zr)/Si multilayer thin films, with satisfying mechanical properties and moderate biocompatibility, was deposited by ion sputtering on an Si substrate. The multilayer 15×(Ti/Zr)/Si thin films were modified by femtosecond laser pulses in air to induce the following modifications: (i) mixing of components inside of the multilayer structures, (ii) the formation of an ultrathin oxide layer at the surfaces, and (iii) surface nano-texturing with the creation of laser-induced periodic surface structure (LIPSS). The focus of this study was an examination of the novel Ti/Zr multilayer thin films in order to create a surface texture with suitable composition and structure for cell integration. Using the SEM and confocal microscopies of the laser-modified Ti/Zr surfaces with seeded c...ell culture (NIH 3T3 fibroblasts), it was found that cell adhesion and growth depend on the surface composition and morphological patterns. These results indicated a good proliferation of cells after two and four days with some tendency of the cell orientation along the LIPSSs. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.

Keywords:
Cell response / Laser-induced periodic surface structure / Multilayer thin film / Ultrafast laser processing
Source:
Nanomaterials, 2020, 10, 12, 1-14
Funding / projects:
  • NFFA-Europe - Nanoscience Foundries and Fine Analysis - Europe (EU-654360)
  • Ministry of Education, Science and Technological Development of the Republic of Serbia

DOI: 10.3390/nano10122531

ISSN: 2079-4991

WoS: 000602452600001

Scopus: 2-s2.0-85097910967
[ Google Scholar ]
3
1
URI
https://vinar.vin.bg.ac.rs/handle/123456789/9785
Collections
  • Radovi istraživača
Institution/Community
Vinča
TY  - JOUR
AU  - Petrović, Suzana
AU  - Peruško, Davor
AU  - Mimidis, Alexandros
AU  - Kavatzikidou, Paraskevi
AU  - Kovač, Janez
AU  - Ranella, Anthi
AU  - Novaković, Mirjana M.
AU  - Popović, Maja
AU  - Stratakis, Emmanuel
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9785
AB  - Ultrafast laser processing with the formation of periodic surface nanostructures on the 15×(Ti/Zr)/Si multilayers is studied in order to the improve cell response. A novel nanocomposite structure in the form of 15x(Ti/Zr)/Si multilayer thin films, with satisfying mechanical properties and moderate biocompatibility, was deposited by ion sputtering on an Si substrate. The multilayer 15×(Ti/Zr)/Si thin films were modified by femtosecond laser pulses in air to induce the following modifications: (i) mixing of components inside of the multilayer structures, (ii) the formation of an ultrathin oxide layer at the surfaces, and (iii) surface nano-texturing with the creation of laser-induced periodic surface structure (LIPSS). The focus of this study was an examination of the novel Ti/Zr multilayer thin films in order to create a surface texture with suitable composition and structure for cell integration. Using the SEM and confocal microscopies of the laser-modified Ti/Zr surfaces with seeded cell culture (NIH 3T3 fibroblasts), it was found that cell adhesion and growth depend on the surface composition and morphological patterns. These results indicated a good proliferation of cells after two and four days with some tendency of the cell orientation along the LIPSSs. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
T2  - Nanomaterials
T1  - Response of NIH 3T3 fibroblast cells on laser-induced periodic surface structures on a 15×(Ti/Zr)/Si multilayer system
VL  - 10
IS  - 12
SP  - 1
EP  - 14
DO  - 10.3390/nano10122531
ER  - 
@article{
author = "Petrović, Suzana and Peruško, Davor and Mimidis, Alexandros and Kavatzikidou, Paraskevi and Kovač, Janez and Ranella, Anthi and Novaković, Mirjana M. and Popović, Maja and Stratakis, Emmanuel",
year = "2020",
abstract = "Ultrafast laser processing with the formation of periodic surface nanostructures on the 15×(Ti/Zr)/Si multilayers is studied in order to the improve cell response. A novel nanocomposite structure in the form of 15x(Ti/Zr)/Si multilayer thin films, with satisfying mechanical properties and moderate biocompatibility, was deposited by ion sputtering on an Si substrate. The multilayer 15×(Ti/Zr)/Si thin films were modified by femtosecond laser pulses in air to induce the following modifications: (i) mixing of components inside of the multilayer structures, (ii) the formation of an ultrathin oxide layer at the surfaces, and (iii) surface nano-texturing with the creation of laser-induced periodic surface structure (LIPSS). The focus of this study was an examination of the novel Ti/Zr multilayer thin films in order to create a surface texture with suitable composition and structure for cell integration. Using the SEM and confocal microscopies of the laser-modified Ti/Zr surfaces with seeded cell culture (NIH 3T3 fibroblasts), it was found that cell adhesion and growth depend on the surface composition and morphological patterns. These results indicated a good proliferation of cells after two and four days with some tendency of the cell orientation along the LIPSSs. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.",
journal = "Nanomaterials",
title = "Response of NIH 3T3 fibroblast cells on laser-induced periodic surface structures on a 15×(Ti/Zr)/Si multilayer system",
volume = "10",
number = "12",
pages = "1-14",
doi = "10.3390/nano10122531"
}
Petrović, S., Peruško, D., Mimidis, A., Kavatzikidou, P., Kovač, J., Ranella, A., Novaković, M. M., Popović, M.,& Stratakis, E.. (2020). Response of NIH 3T3 fibroblast cells on laser-induced periodic surface structures on a 15×(Ti/Zr)/Si multilayer system. in Nanomaterials, 10(12), 1-14.
https://doi.org/10.3390/nano10122531
Petrović S, Peruško D, Mimidis A, Kavatzikidou P, Kovač J, Ranella A, Novaković MM, Popović M, Stratakis E. Response of NIH 3T3 fibroblast cells on laser-induced periodic surface structures on a 15×(Ti/Zr)/Si multilayer system. in Nanomaterials. 2020;10(12):1-14.
doi:10.3390/nano10122531 .
Petrović, Suzana, Peruško, Davor, Mimidis, Alexandros, Kavatzikidou, Paraskevi, Kovač, Janez, Ranella, Anthi, Novaković, Mirjana M., Popović, Maja, Stratakis, Emmanuel, "Response of NIH 3T3 fibroblast cells on laser-induced periodic surface structures on a 15×(Ti/Zr)/Si multilayer system" in Nanomaterials, 10, no. 12 (2020):1-14,
https://doi.org/10.3390/nano10122531 . .

DSpace software copyright © 2002-2015  DuraSpace
About the VinaR Repository | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About the VinaR Repository | Send Feedback

OpenAIRERCUB