VinaR - Repository of the Vinča Nuclear Institute
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   Vinar
  • Vinča
  • Radovi istraživača
  • View Item
  •   Vinar
  • Vinča
  • Radovi istraživača
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Self induced transparency pulses in transmon base quantum metamaterials

No Thumbnail
Authors
Čevizović, Dalibor
Pržulj, Željko
Ivić, Zoran
Chizhov, Alexei
Conference object (Published version)
,
© 2021 IEEE
Metadata
Show full item record
Abstract
In this paper, we analyze the possible utilization of the short electromagnetic pulse for qubit state storage and for qubit manipulation. We analyze the properties of the electromagnetic pulse properties on characteristic preparation of the qubit register as well as on the pulse duration and determined the conditions under which it can be used as a medium for storing the qubit state, as well as for the qubit state manipulation. © 2021 IEEE.
Keywords:
electromagnetic pulse / quantum information / soliton / two-level quantum systems
Source:
20th International Symposium INFOTEH-JAHORINA (INFOTEH 2021), 2021, 9400673-
Publisher:
  • IEEE
Funding / projects:
  • Photonics of micro and nano structured materials (RS-45010)
  • bilateral project “Theory of Condensed Matter” between the Ministry of Education, Science and Technological Development of Republic Serbia and JINR, Dubna

DOI: 10.1109/INFOTEH51037.2021.9400673

ISBN: 978-1-7281-8229-2

Scopus: 2-s2.0-85104861809
[ Google Scholar ]
URI
https://vinar.vin.bg.ac.rs/handle/123456789/9700
Collections
  • Radovi istraživača
Institution/Community
Vinča
TY  - CONF
AU  - Čevizović, Dalibor
AU  - Pržulj, Željko
AU  - Ivić, Zoran
AU  - Chizhov, Alexei
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9700
AB  - In this paper, we analyze the possible utilization of the short electromagnetic pulse for qubit state storage and for qubit manipulation. We analyze the properties of the electromagnetic pulse properties on characteristic preparation of the qubit register as well as on the pulse duration and determined the conditions under which it can be used as a medium for storing the qubit state, as well as for the qubit state manipulation. © 2021 IEEE.
PB  - IEEE
C3  - 20th International Symposium INFOTEH-JAHORINA (INFOTEH 2021)
T1  - Self induced transparency pulses in transmon base quantum metamaterials
SP  - 9400673
DO  - 10.1109/INFOTEH51037.2021.9400673
ER  - 
@conference{
author = "Čevizović, Dalibor and Pržulj, Željko and Ivić, Zoran and Chizhov, Alexei",
year = "2021",
abstract = "In this paper, we analyze the possible utilization of the short electromagnetic pulse for qubit state storage and for qubit manipulation. We analyze the properties of the electromagnetic pulse properties on characteristic preparation of the qubit register as well as on the pulse duration and determined the conditions under which it can be used as a medium for storing the qubit state, as well as for the qubit state manipulation. © 2021 IEEE.",
publisher = "IEEE",
journal = "20th International Symposium INFOTEH-JAHORINA (INFOTEH 2021)",
title = "Self induced transparency pulses in transmon base quantum metamaterials",
pages = "9400673",
doi = "10.1109/INFOTEH51037.2021.9400673"
}
Čevizović, D., Pržulj, Ž., Ivić, Z.,& Chizhov, A.. (2021). Self induced transparency pulses in transmon base quantum metamaterials. in 20th International Symposium INFOTEH-JAHORINA (INFOTEH 2021)
IEEE., 9400673.
https://doi.org/10.1109/INFOTEH51037.2021.9400673
Čevizović D, Pržulj Ž, Ivić Z, Chizhov A. Self induced transparency pulses in transmon base quantum metamaterials. in 20th International Symposium INFOTEH-JAHORINA (INFOTEH 2021). 2021;:9400673.
doi:10.1109/INFOTEH51037.2021.9400673 .
Čevizović, Dalibor, Pržulj, Željko, Ivić, Zoran, Chizhov, Alexei, "Self induced transparency pulses in transmon base quantum metamaterials" in 20th International Symposium INFOTEH-JAHORINA (INFOTEH 2021) (2021):9400673,
https://doi.org/10.1109/INFOTEH51037.2021.9400673 . .

DSpace software copyright © 2002-2015  DuraSpace
About the VinaR Repository | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About the VinaR Repository | Send Feedback

OpenAIRERCUB