VinaR - Repository of the Vinča Nuclear Institute
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   Vinar
  • Vinča
  • Radovi istraživača
  • View Item
  •   Vinar
  • Vinča
  • Radovi istraživača
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Molding Wetting by Laser-Induced Nanostructures

Thumbnail
2020
Main article [PDF] (1.632Mb)
Authors
Kovačević, Aleksander G.
Petrović, Suzana
Mimidis, Alexandros
Stratakis, Emmanuel
Pantelić, Dejan
Kolarić, Branko
Article (Published version)
Metadata
Show full item record
Abstract
The influence of material characteristics—i.e., type or surface texture—to wetting properties is nowadays increased by the implementation of ultrafast lasers for nanostructuring. In this account, we exposed multilayer thin metal film samples of different materials to a femtosecond laser beam at a 1030 nm wavelength. The interaction generated high-quality laser-induced periodic surface structures (LIPSS) of spatial periods between 740 and 790 nm and with maximal average corrugation height below 100 nm. The contact angle (CA) values of the water droplets on the surface were estimated and the values between unmodified and modified samples were compared. Even though the laser interaction changed both the surface morphology and the chemical composition, the wetting properties were predominantly influenced by the small change in morphology causing the increase in the contact angle of ~80%, which could not be explained classically. The influence of both surface corrugation and che...mical composition to the wetting properties has been thoroughly investigated, discussed and explained. The presented results clearly confirm that femtosecond patterning can be used to mold wetting properties.

Keywords:
LIPSS / nano-optics / nanostructures / wetting
Source:
Applied Sciences, 2020, 10, 17, 6008-
Funding / projects:
  • Fabrication and characterization of nano-photonic functional structrues in biomedicine and informatics (RS-45016)
  • Holographic methods for generation of specific wave-fronts to better control quantum coherent effects in laser-atom interactions (RS-171038)
  • NFFA-Europe - Nanoscience Foundries and Fine Analysis - Europe (EU-654360)

DOI: 10.3390/app10176008

ISSN: 2076-3417

WoS: 000569623400001

Scopus: 2-s2.0-85090212086
[ Google Scholar ]
URI
https://vinar.vin.bg.ac.rs/handle/123456789/9632
Collections
  • Radovi istraživača
Institution/Community
Vinča
TY  - JOUR
AU  - Kovačević, Aleksander G.
AU  - Petrović, Suzana
AU  - Mimidis, Alexandros
AU  - Stratakis, Emmanuel
AU  - Pantelić, Dejan
AU  - Kolarić, Branko
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9632
AB  - The influence of material characteristics—i.e., type or surface texture—to wetting properties is nowadays increased by the implementation of ultrafast lasers for nanostructuring. In this account, we exposed multilayer thin metal film samples of different materials to a femtosecond laser beam at a 1030 nm wavelength. The interaction generated high-quality laser-induced periodic surface structures (LIPSS) of spatial periods between 740 and 790 nm and with maximal average corrugation height below 100 nm. The contact angle (CA) values of the water droplets on the surface were estimated and the values between unmodified and modified samples were compared. Even though the laser interaction changed both the surface morphology and the chemical composition, the wetting properties were predominantly influenced by the small change in morphology causing the increase in the contact angle of ~80%, which could not be explained classically. The influence of both surface corrugation and chemical composition to the wetting properties has been thoroughly investigated, discussed and explained. The presented results clearly confirm that femtosecond patterning can be used to mold wetting properties.
T2  - Applied Sciences
T1  - Molding Wetting by Laser-Induced Nanostructures
VL  - 10
IS  - 17
SP  - 6008
DO  - 10.3390/app10176008
ER  - 
@article{
author = "Kovačević, Aleksander G. and Petrović, Suzana and Mimidis, Alexandros and Stratakis, Emmanuel and Pantelić, Dejan and Kolarić, Branko",
year = "2020",
abstract = "The influence of material characteristics—i.e., type or surface texture—to wetting properties is nowadays increased by the implementation of ultrafast lasers for nanostructuring. In this account, we exposed multilayer thin metal film samples of different materials to a femtosecond laser beam at a 1030 nm wavelength. The interaction generated high-quality laser-induced periodic surface structures (LIPSS) of spatial periods between 740 and 790 nm and with maximal average corrugation height below 100 nm. The contact angle (CA) values of the water droplets on the surface were estimated and the values between unmodified and modified samples were compared. Even though the laser interaction changed both the surface morphology and the chemical composition, the wetting properties were predominantly influenced by the small change in morphology causing the increase in the contact angle of ~80%, which could not be explained classically. The influence of both surface corrugation and chemical composition to the wetting properties has been thoroughly investigated, discussed and explained. The presented results clearly confirm that femtosecond patterning can be used to mold wetting properties.",
journal = "Applied Sciences",
title = "Molding Wetting by Laser-Induced Nanostructures",
volume = "10",
number = "17",
pages = "6008",
doi = "10.3390/app10176008"
}
Kovačević, A. G., Petrović, S., Mimidis, A., Stratakis, E., Pantelić, D.,& Kolarić, B.. (2020). Molding Wetting by Laser-Induced Nanostructures. in Applied Sciences, 10(17), 6008.
https://doi.org/10.3390/app10176008
Kovačević AG, Petrović S, Mimidis A, Stratakis E, Pantelić D, Kolarić B. Molding Wetting by Laser-Induced Nanostructures. in Applied Sciences. 2020;10(17):6008.
doi:10.3390/app10176008 .
Kovačević, Aleksander G., Petrović, Suzana, Mimidis, Alexandros, Stratakis, Emmanuel, Pantelić, Dejan, Kolarić, Branko, "Molding Wetting by Laser-Induced Nanostructures" in Applied Sciences, 10, no. 17 (2020):6008,
https://doi.org/10.3390/app10176008 . .

DSpace software copyright © 2002-2015  DuraSpace
About the VinaR Repository | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About the VinaR Repository | Send Feedback

OpenAIRERCUB