VinaR - Repository of the Vinča Nuclear Institute
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   Vinar
  • Vinča
  • Radovi istraživača
  • View Item
  •   Vinar
  • Vinča
  • Radovi istraživača
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Triple-temperature readout in luminescence thermometry with Cr3+-doped Mg2SiO4 operating from cryogenic to physiologically relevant temperatures

No Thumbnail
Authors
Ristić, Zoran
Đorđević, Vesna R.
Medić, Mina M.
Kuzman, Sanja
Sekulić, Milica
Antić, Željka
Dramićanin, Miroslav
Article (Published version)
,
© 2021 IOP Publishing Ltd.
Metadata
Show full item record
Abstract
Cr3+-doped Mg2SiO4 orthorhombic nanoparticles are synthesized by a combustion method. The 3d3 electron configuration of the Cr3+ ion results in the deep-red emission from optical transitions between d-d orbitals. Two overlapping emissions from the Cr3+ spin-forbidden 2Eg→ 4A2g and the spin-allowed 4T2g→ 4A2g electronic transitions are influenced by the strong crystal field in Mg2SiO4 and, thus, are suitable for ratiometric luminescence thermometry. The temperature-induced changes in Cr3+-doped Mg2SiO4 emission are tested for use in luminescence thermometry from cryogenic to physiologically relevant temperatures (10-350 K) by three approaches: (a) temperature-induced changes of emission intensity; (b) temperature-dependent luminescence lifetime; and (c) temperature-induced changes of emission band position. The second approach offers applicable thermometry at cryogenic temperatures, starting from temperatures as low as 50 K, while all three approaches offer applicable thermometry at phy...siologically relevant temperatures with relative sensitivities of 0.7% K-1 for emission intensity, 0.8% K-1 for lifetime and 0.85% K-1 for band position at 310 K. © 2021 IOP Publishing Ltd.

Keywords:
Cr3+ / forsterite / luminescence / luminescence thermometry / phosphors
Source:
Measurement Science and Technology, 2021, 32, 5, 054004-
Funding / projects:
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200017 (University of Belgrade, Institute of Nuclear Sciences 'Vinča', Belgrade-Vinča) (RS-200017)

DOI: 10.1088/1361-6501/abdc9a

ISSN: 0957-0233

WoS: 000630463600001

Scopus: 2-s2.0-85103820219
[ Google Scholar ]
17
8
URI
https://vinar.vin.bg.ac.rs/handle/123456789/9624
Collections
  • Radovi istraživača
  • 030 - Laboratorija za radijacionu hemiju i fiziku
Institution/Community
Vinča
TY  - JOUR
AU  - Ristić, Zoran
AU  - Đorđević, Vesna R.
AU  - Medić, Mina M.
AU  - Kuzman, Sanja
AU  - Sekulić, Milica
AU  - Antić, Željka
AU  - Dramićanin, Miroslav
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9624
AB  - Cr3+-doped Mg2SiO4 orthorhombic nanoparticles are synthesized by a combustion method. The 3d3 electron configuration of the Cr3+ ion results in the deep-red emission from optical transitions between d-d orbitals. Two overlapping emissions from the Cr3+ spin-forbidden 2Eg→ 4A2g and the spin-allowed 4T2g→ 4A2g electronic transitions are influenced by the strong crystal field in Mg2SiO4 and, thus, are suitable for ratiometric luminescence thermometry. The temperature-induced changes in Cr3+-doped Mg2SiO4 emission are tested for use in luminescence thermometry from cryogenic to physiologically relevant temperatures (10-350 K) by three approaches: (a) temperature-induced changes of emission intensity; (b) temperature-dependent luminescence lifetime; and (c) temperature-induced changes of emission band position. The second approach offers applicable thermometry at cryogenic temperatures, starting from temperatures as low as 50 K, while all three approaches offer applicable thermometry at physiologically relevant temperatures with relative sensitivities of 0.7% K-1 for emission intensity, 0.8% K-1 for lifetime and 0.85% K-1 for band position at 310 K. © 2021 IOP Publishing Ltd.
T2  - Measurement Science and Technology
T1  - Triple-temperature readout in luminescence thermometry with Cr3+-doped Mg2SiO4 operating from cryogenic to physiologically relevant temperatures
VL  - 32
IS  - 5
SP  - 054004
DO  - 10.1088/1361-6501/abdc9a
ER  - 
@article{
author = "Ristić, Zoran and Đorđević, Vesna R. and Medić, Mina M. and Kuzman, Sanja and Sekulić, Milica and Antić, Željka and Dramićanin, Miroslav",
year = "2021",
abstract = "Cr3+-doped Mg2SiO4 orthorhombic nanoparticles are synthesized by a combustion method. The 3d3 electron configuration of the Cr3+ ion results in the deep-red emission from optical transitions between d-d orbitals. Two overlapping emissions from the Cr3+ spin-forbidden 2Eg→ 4A2g and the spin-allowed 4T2g→ 4A2g electronic transitions are influenced by the strong crystal field in Mg2SiO4 and, thus, are suitable for ratiometric luminescence thermometry. The temperature-induced changes in Cr3+-doped Mg2SiO4 emission are tested for use in luminescence thermometry from cryogenic to physiologically relevant temperatures (10-350 K) by three approaches: (a) temperature-induced changes of emission intensity; (b) temperature-dependent luminescence lifetime; and (c) temperature-induced changes of emission band position. The second approach offers applicable thermometry at cryogenic temperatures, starting from temperatures as low as 50 K, while all three approaches offer applicable thermometry at physiologically relevant temperatures with relative sensitivities of 0.7% K-1 for emission intensity, 0.8% K-1 for lifetime and 0.85% K-1 for band position at 310 K. © 2021 IOP Publishing Ltd.",
journal = "Measurement Science and Technology",
title = "Triple-temperature readout in luminescence thermometry with Cr3+-doped Mg2SiO4 operating from cryogenic to physiologically relevant temperatures",
volume = "32",
number = "5",
pages = "054004",
doi = "10.1088/1361-6501/abdc9a"
}
Ristić, Z., Đorđević, V. R., Medić, M. M., Kuzman, S., Sekulić, M., Antić, Ž.,& Dramićanin, M.. (2021). Triple-temperature readout in luminescence thermometry with Cr3+-doped Mg2SiO4 operating from cryogenic to physiologically relevant temperatures. in Measurement Science and Technology, 32(5), 054004.
https://doi.org/10.1088/1361-6501/abdc9a
Ristić Z, Đorđević VR, Medić MM, Kuzman S, Sekulić M, Antić Ž, Dramićanin M. Triple-temperature readout in luminescence thermometry with Cr3+-doped Mg2SiO4 operating from cryogenic to physiologically relevant temperatures. in Measurement Science and Technology. 2021;32(5):054004.
doi:10.1088/1361-6501/abdc9a .
Ristić, Zoran, Đorđević, Vesna R., Medić, Mina M., Kuzman, Sanja, Sekulić, Milica, Antić, Željka, Dramićanin, Miroslav, "Triple-temperature readout in luminescence thermometry with Cr3+-doped Mg2SiO4 operating from cryogenic to physiologically relevant temperatures" in Measurement Science and Technology, 32, no. 5 (2021):054004,
https://doi.org/10.1088/1361-6501/abdc9a . .

DSpace software copyright © 2002-2015  DuraSpace
About the VinaR Repository | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About the VinaR Repository | Send Feedback

OpenAIRERCUB