ВинаР - Репозиторијум Института за нуклеарне науке Винча
    • English
    • Српски
    • Српски (Serbia)
  • Српски (ћирилица) 
    • Енглески
    • Српски (ћирилица)
    • Српски (латиница)
  • Пријава
Преглед записа 
  •   ВинаР
  • Vinča
  • Radovi istraživača
  • Преглед записа
  •   ВинаР
  • Vinča
  • Radovi istraživača
  • Преглед записа
JavaScript is disabled for your browser. Some features of this site may not work without it.

High-performance laminate material based on polyurethane and epoxide reinforced by silica particles from rice husk used for intelligent pedestrian crossings

Само за регистроване кориснике
2021
Аутори
Tomić, Nataša Z.
Marinković, Aleksandar D.
Balanč, Bojana
Obradović, Vera
Pavlović, Vladimir B.
Manojlović, Vaso
Vuksanović, Marija M.
Чланак у часопису (Објављена верзија)
,
© 2021, Iran Polymer and Petrochemical Institute
Метаподаци
Приказ свих података о документу
Апстракт
Intelligent pedestrian crossings were made with the aim to increase pedestrian safety at poorly lit locations. New technologies include the design of polymer materials that have high performance by optimizing properties such as compression, tensile and impact strengths, wear resistance, hardness and transparency. The desired properties are set up to face the demands of a heavy daily traffic load and enable the functionality. Laminate material consists of the epoxy composite reinforced with silica (SiO2) derived from rice husk waste and a protective thermoplastic polyurethane layer. The top layer of the laminate material is a transparent thermoplastic polyurethane (TPU) serving as a protective layer with high wear resistance and good adhesion with epoxy composite. Silica obtained from rice husk waste was used in reinforcing of the epoxide in order to improve the mechanical properties, diffuse the light, improve the adhesion with TPU and decrease the production costs. Micro-Vickers hardn...ess of the epoxy composite was increased by 70% with the addition of 15 wt% of SiO2. Impact energy of the epoxy composite with 15 wt% of SiO2 was increased by 272.9% after adding the TPU layer. Compressive strength of the epoxy resin is improved by 16.2% by reinforcement with 15 wt% of SiO2, while the laminate composite material showed 207% higher compressive strength than the commonly used asphalt pavement. Moreover, the addition of 15 wt% of SiO2 improved the adhesion between epoxy composite and TPU layer (11.2%). Thus, obtained laminated material made of the epoxy composite with 15 wt% of SiO2 (obtained from rice husk waste) and TPU598 showed mechanical properties and LED light transmission/diffusion appropriate for application in the intelligent pedestrian crossings. © 2021, Iran Polymer and Petrochemical Institute.

Кључне речи:
Epoxy resin / Laminates / Pedestrian crossings / Safety / Thermoplastic polyurethane
Извор:
Iranian Polymer Journal (English Edition), 2021, 30, 3, 319-330
Финансирање / пројекти:
  • Министарство науке, технолошког развоја и иновација Републике Србије, институционално финансирање - 200135 (Универзитет у Београду, Технолошко-металуршки факултет) (RS-MESTD-inst-2020-200135)
  • Innovation Fund of the Republic of Serbia [Innovation voucher 284]

DOI: 10.1007/s13726-020-00894-6

ISSN: 1026-1265

WoS: 000606402400001

Scopus: 2-s2.0-85099317283
[ Google Scholar ]
9
8
URI
https://vinar.vin.bg.ac.rs/handle/123456789/9517
Колекције
  • 060 - Laboratorija za hemijsku dinamiku i permanentno obrazovanje
  • Radovi istraživača
Институција/група
Vinča
TY  - JOUR
AU  - Tomić, Nataša Z.
AU  - Marinković, Aleksandar D.
AU  - Balanč, Bojana
AU  - Obradović, Vera
AU  - Pavlović, Vladimir B.
AU  - Manojlović, Vaso
AU  - Vuksanović, Marija M.
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9517
AB  - Intelligent pedestrian crossings were made with the aim to increase pedestrian safety at poorly lit locations. New technologies include the design of polymer materials that have high performance by optimizing properties such as compression, tensile and impact strengths, wear resistance, hardness and transparency. The desired properties are set up to face the demands of a heavy daily traffic load and enable the functionality. Laminate material consists of the epoxy composite reinforced with silica (SiO2) derived from rice husk waste and a protective thermoplastic polyurethane layer. The top layer of the laminate material is a transparent thermoplastic polyurethane (TPU) serving as a protective layer with high wear resistance and good adhesion with epoxy composite. Silica obtained from rice husk waste was used in reinforcing of the epoxide in order to improve the mechanical properties, diffuse the light, improve the adhesion with TPU and decrease the production costs. Micro-Vickers hardness of the epoxy composite was increased by 70% with the addition of 15 wt% of SiO2. Impact energy of the epoxy composite with 15 wt% of SiO2 was increased by 272.9% after adding the TPU layer. Compressive strength of the epoxy resin is improved by 16.2% by reinforcement with 15 wt% of SiO2, while the laminate composite material showed 207% higher compressive strength than the commonly used asphalt pavement. Moreover, the addition of 15 wt% of SiO2 improved the adhesion between epoxy composite and TPU layer (11.2%). Thus, obtained laminated material made of the epoxy composite with 15 wt% of SiO2 (obtained from rice husk waste) and TPU598 showed mechanical properties and LED light transmission/diffusion appropriate for application in the intelligent pedestrian crossings. © 2021, Iran Polymer and Petrochemical Institute.
T2  - Iranian Polymer Journal (English Edition)
T1  - High-performance laminate material based on polyurethane and epoxide reinforced by silica particles from rice husk used for intelligent pedestrian crossings
VL  - 30
IS  - 3
SP  - 319
EP  - 330
DO  - 10.1007/s13726-020-00894-6
ER  - 
@article{
author = "Tomić, Nataša Z. and Marinković, Aleksandar D. and Balanč, Bojana and Obradović, Vera and Pavlović, Vladimir B. and Manojlović, Vaso and Vuksanović, Marija M.",
year = "2021",
abstract = "Intelligent pedestrian crossings were made with the aim to increase pedestrian safety at poorly lit locations. New technologies include the design of polymer materials that have high performance by optimizing properties such as compression, tensile and impact strengths, wear resistance, hardness and transparency. The desired properties are set up to face the demands of a heavy daily traffic load and enable the functionality. Laminate material consists of the epoxy composite reinforced with silica (SiO2) derived from rice husk waste and a protective thermoplastic polyurethane layer. The top layer of the laminate material is a transparent thermoplastic polyurethane (TPU) serving as a protective layer with high wear resistance and good adhesion with epoxy composite. Silica obtained from rice husk waste was used in reinforcing of the epoxide in order to improve the mechanical properties, diffuse the light, improve the adhesion with TPU and decrease the production costs. Micro-Vickers hardness of the epoxy composite was increased by 70% with the addition of 15 wt% of SiO2. Impact energy of the epoxy composite with 15 wt% of SiO2 was increased by 272.9% after adding the TPU layer. Compressive strength of the epoxy resin is improved by 16.2% by reinforcement with 15 wt% of SiO2, while the laminate composite material showed 207% higher compressive strength than the commonly used asphalt pavement. Moreover, the addition of 15 wt% of SiO2 improved the adhesion between epoxy composite and TPU layer (11.2%). Thus, obtained laminated material made of the epoxy composite with 15 wt% of SiO2 (obtained from rice husk waste) and TPU598 showed mechanical properties and LED light transmission/diffusion appropriate for application in the intelligent pedestrian crossings. © 2021, Iran Polymer and Petrochemical Institute.",
journal = "Iranian Polymer Journal (English Edition)",
title = "High-performance laminate material based on polyurethane and epoxide reinforced by silica particles from rice husk used for intelligent pedestrian crossings",
volume = "30",
number = "3",
pages = "319-330",
doi = "10.1007/s13726-020-00894-6"
}
Tomić, N. Z., Marinković, A. D., Balanč, B., Obradović, V., Pavlović, V. B., Manojlović, V.,& Vuksanović, M. M.. (2021). High-performance laminate material based on polyurethane and epoxide reinforced by silica particles from rice husk used for intelligent pedestrian crossings. in Iranian Polymer Journal (English Edition), 30(3), 319-330.
https://doi.org/10.1007/s13726-020-00894-6
Tomić NZ, Marinković AD, Balanč B, Obradović V, Pavlović VB, Manojlović V, Vuksanović MM. High-performance laminate material based on polyurethane and epoxide reinforced by silica particles from rice husk used for intelligent pedestrian crossings. in Iranian Polymer Journal (English Edition). 2021;30(3):319-330.
doi:10.1007/s13726-020-00894-6 .
Tomić, Nataša Z., Marinković, Aleksandar D., Balanč, Bojana, Obradović, Vera, Pavlović, Vladimir B., Manojlović, Vaso, Vuksanović, Marija M., "High-performance laminate material based on polyurethane and epoxide reinforced by silica particles from rice husk used for intelligent pedestrian crossings" in Iranian Polymer Journal (English Edition), 30, no. 3 (2021):319-330,
https://doi.org/10.1007/s13726-020-00894-6 . .

DSpace software copyright © 2002-2015  DuraSpace
О репозиторијуму ВинаР | Пошаљите запажања

re3dataOpenAIRERCUB
 

 

Комплетан репозиторијумГрупеАуториНасловиТемеОва институцијаАуториНасловиТеме

Статистика

Преглед статистика

DSpace software copyright © 2002-2015  DuraSpace
О репозиторијуму ВинаР | Пошаљите запажања

re3dataOpenAIRERCUB