VinaR - Repository of the Vinča Nuclear Institute
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   Vinar
  • Vinča
  • Radovi istraživača
  • View Item
  •   Vinar
  • Vinča
  • Radovi istraživača
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Supersensitive Sm2+ ‐Activated Al2O3 Thermometric Coatings for High‐Resolution Multiple Temperature Read‐Outs from Luminescence

No Thumbnail
Authors
Ćirić, Aleksandar
Stojadinović, Stevan
Ristić, Zoran
Zeković, Ivana Lj.
Kuzman, Sanja
Antić, Željka
Dramićanin, Miroslav
Article (Published version)
,
© 2021 Wiley-VCH GmbH
Metadata
Show full item record
Abstract
The introduction of additional functionalities to materials is exceptionally important as it opens new applications for them. Aluminum, one of the most abundant and important materials, is coated with luminescent Sm2+-doped γ-aluminium oxide to impart thermometric functionality. Considering the potential industrial applications, two of the most widely used aluminum alloys, 6061 and 7075, are also coated. For this purpose, plasma electrolytic oxidation (PEO), an effective technique for producing hard ceramic coatings on various metal surfaces, is used. It is shown that thermometric coatings can be produced on aluminum in one-step process by adding the raw precursor to the electrolyte. The valence reduction of Ln3+ to Ln2+ is achieved during the PEO process. The intense and broad (orange to deep red) emission from the coating shows supersensitivity to temperature changes over the 100–648 K range. The temperature is obtained from the coating emission using i) the emission intensity ratio ...method, ii) emission lifetime, and iii) emission band position with sensitivities of 4.8% K−1, 1.2% K−1, and 8 cm−1 K−1, respectively. Several applications would benefit from the thermometric coating's excellent temperature resolution of 0.04 K and the choice of three temperature read-outs that facilitate the coating's use in different luminescence thermometry setups. © 2021 Wiley-VCH GmbH

Keywords:
coatings / luminescence / Sm2+ / thermometry / γ-Al2O3
Source:
Advanced Materials Technologies, 2021, 6, 4, 2001201-
Funding / projects:
  • NATO Science for Peace and Security Programme [G5751]
  • Ministry of Education, Science and Technological Development of the Republic of Serbia

DOI: 10.1002/admt.202001201

ISSN: 2365-709X

WoS: 000625235500001

Scopus: 2-s2.0-85101916415
[ Google Scholar ]
12
8
URI
https://vinar.vin.bg.ac.rs/handle/123456789/9140
Collections
  • Radovi istraživača
  • 030 - Laboratorija za radijacionu hemiju i fiziku
Institution/Community
Vinča
TY  - JOUR
AU  - Ćirić, Aleksandar
AU  - Stojadinović, Stevan
AU  - Ristić, Zoran
AU  - Zeković, Ivana Lj.
AU  - Kuzman, Sanja
AU  - Antić, Željka
AU  - Dramićanin, Miroslav
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9140
AB  - The introduction of additional functionalities to materials is exceptionally important as it opens new applications for them. Aluminum, one of the most abundant and important materials, is coated with luminescent Sm2+-doped γ-aluminium oxide to impart thermometric functionality. Considering the potential industrial applications, two of the most widely used aluminum alloys, 6061 and 7075, are also coated. For this purpose, plasma electrolytic oxidation (PEO), an effective technique for producing hard ceramic coatings on various metal surfaces, is used. It is shown that thermometric coatings can be produced on aluminum in one-step process by adding the raw precursor to the electrolyte. The valence reduction of Ln3+ to Ln2+ is achieved during the PEO process. The intense and broad (orange to deep red) emission from the coating shows supersensitivity to temperature changes over the 100–648 K range. The temperature is obtained from the coating emission using i) the emission intensity ratio method, ii) emission lifetime, and iii) emission band position with sensitivities of 4.8% K−1, 1.2% K−1, and 8 cm−1 K−1, respectively. Several applications would benefit from the thermometric coating's excellent temperature resolution of 0.04 K and the choice of three temperature read-outs that facilitate the coating's use in different luminescence thermometry setups. © 2021 Wiley-VCH GmbH
T2  - Advanced Materials Technologies
T1  - Supersensitive Sm2+ ‐Activated Al2O3 Thermometric Coatings for High‐Resolution Multiple Temperature Read‐Outs from Luminescence
VL  - 6
IS  - 4
SP  - 2001201
DO  - 10.1002/admt.202001201
ER  - 
@article{
author = "Ćirić, Aleksandar and Stojadinović, Stevan and Ristić, Zoran and Zeković, Ivana Lj. and Kuzman, Sanja and Antić, Željka and Dramićanin, Miroslav",
year = "2021",
abstract = "The introduction of additional functionalities to materials is exceptionally important as it opens new applications for them. Aluminum, one of the most abundant and important materials, is coated with luminescent Sm2+-doped γ-aluminium oxide to impart thermometric functionality. Considering the potential industrial applications, two of the most widely used aluminum alloys, 6061 and 7075, are also coated. For this purpose, plasma electrolytic oxidation (PEO), an effective technique for producing hard ceramic coatings on various metal surfaces, is used. It is shown that thermometric coatings can be produced on aluminum in one-step process by adding the raw precursor to the electrolyte. The valence reduction of Ln3+ to Ln2+ is achieved during the PEO process. The intense and broad (orange to deep red) emission from the coating shows supersensitivity to temperature changes over the 100–648 K range. The temperature is obtained from the coating emission using i) the emission intensity ratio method, ii) emission lifetime, and iii) emission band position with sensitivities of 4.8% K−1, 1.2% K−1, and 8 cm−1 K−1, respectively. Several applications would benefit from the thermometric coating's excellent temperature resolution of 0.04 K and the choice of three temperature read-outs that facilitate the coating's use in different luminescence thermometry setups. © 2021 Wiley-VCH GmbH",
journal = "Advanced Materials Technologies",
title = "Supersensitive Sm2+ ‐Activated Al2O3 Thermometric Coatings for High‐Resolution Multiple Temperature Read‐Outs from Luminescence",
volume = "6",
number = "4",
pages = "2001201",
doi = "10.1002/admt.202001201"
}
Ćirić, A., Stojadinović, S., Ristić, Z., Zeković, I. Lj., Kuzman, S., Antić, Ž.,& Dramićanin, M.. (2021). Supersensitive Sm2+ ‐Activated Al2O3 Thermometric Coatings for High‐Resolution Multiple Temperature Read‐Outs from Luminescence. in Advanced Materials Technologies, 6(4), 2001201.
https://doi.org/10.1002/admt.202001201
Ćirić A, Stojadinović S, Ristić Z, Zeković IL, Kuzman S, Antić Ž, Dramićanin M. Supersensitive Sm2+ ‐Activated Al2O3 Thermometric Coatings for High‐Resolution Multiple Temperature Read‐Outs from Luminescence. in Advanced Materials Technologies. 2021;6(4):2001201.
doi:10.1002/admt.202001201 .
Ćirić, Aleksandar, Stojadinović, Stevan, Ristić, Zoran, Zeković, Ivana Lj., Kuzman, Sanja, Antić, Željka, Dramićanin, Miroslav, "Supersensitive Sm2+ ‐Activated Al2O3 Thermometric Coatings for High‐Resolution Multiple Temperature Read‐Outs from Luminescence" in Advanced Materials Technologies, 6, no. 4 (2021):2001201,
https://doi.org/10.1002/admt.202001201 . .

DSpace software copyright © 2002-2015  DuraSpace
About the VinaR Repository | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About the VinaR Repository | Send Feedback

OpenAIRERCUB