VinaR - Repository of the Vinča Nuclear Institute
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   Vinar
  • Vinča
  • Radovi istraživača
  • View Item
  •   Vinar
  • Vinča
  • Radovi istraživača
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Study of MW-scale biogas-fed SOFC-WGS-TSA-PEMFC hybrid power technology as distributed energy system: Thermodynamic, exergetic and thermo-economic evaluation

Authorized Users Only
2021
Authors
Wu, Zhen
Yao, Jing
Zhu, Pengfei
Yang, Fusheng
Meng, Xiangyu
Kurko, Sandra V.
Zhang, Zaoxiao
Article (Published version)
,
© 2020 Hydrogen Energy Publications LLC
Metadata
Show full item record
Abstract
Advanced biogas power generation technology has been attracting attentions, which contributes to the waste disposal and the mitigation of greenhouse gas emissions. This work proposes and models a novel biogas-fed hybrid power generation system consisting of solid oxide fuel cell, water gas shift reaction, thermal swing adsorption and proton exchange membrane fuel cell (SOFC-WGS-TSA-PEMFC). The thermodynamic, exergetic, and thermo-economic analyses of this hybrid system for power generation were conducted to comprehensively evaluate its performance. It was found that the novel biogas-fed hybrid system has a gross energy conversion efficiency of 68.63% and exergy efficiency of 65.36%, indicating high efficiency for this kind of hybrid power technology. The market sensitivity analysis showed that the hybrid system also has a low sensitivity to market price fluctuation. Under the current subsidy level for the distributed biogas power plant, the levelized cost of energy can be lowered to 0....02942 $/kWh for a 1 MW scale system. Accordingly, the payback period and annual return on investment can reach 1.4 year and about 20%, respectively. These results reveal that the proposed hybrid system is promising and economically feasible as a distributed power plant, especially for the small power scale (no more than 2 MW).

Keywords:
Biogas fuel / Fuel cell / Hybrid power system / Thermodynamic analysis / Thermo-economic modeling
Source:
International Journal of Hydrogen Energy, 2021, 46, 19, 11183-11198
Funding / projects:
  • National Key Research and Development Program of China [2018YFE0202000]
  • National Natural Science Foundation of China (NSFC) [21736008]

DOI: 10.1016/j.ijhydene.2020.02.111

ISSN: 0360-3199

WoS: 000625215300016

Scopus: 2-s2.0-85081266879
[ Google Scholar ]
8
5
URI
https://vinar.vin.bg.ac.rs/handle/123456789/9074
Collections
  • Radovi istraživača
  • 010 - Laboratorija za fiziku
Institution/Community
Vinča
TY  - JOUR
AU  - Wu, Zhen
AU  - Yao, Jing
AU  - Zhu, Pengfei
AU  - Yang, Fusheng
AU  - Meng, Xiangyu
AU  - Kurko, Sandra V.
AU  - Zhang, Zaoxiao
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9074
AB  - Advanced biogas power generation technology has been attracting attentions, which contributes to the waste disposal and the mitigation of greenhouse gas emissions. This work proposes and models a novel biogas-fed hybrid power generation system consisting of solid oxide fuel cell, water gas shift reaction, thermal swing adsorption and proton exchange membrane fuel cell (SOFC-WGS-TSA-PEMFC). The thermodynamic, exergetic, and thermo-economic analyses of this hybrid system for power generation were conducted to comprehensively evaluate its performance. It was found that the novel biogas-fed hybrid system has a gross energy conversion efficiency of 68.63% and exergy efficiency of 65.36%, indicating high efficiency for this kind of hybrid power technology. The market sensitivity analysis showed that the hybrid system also has a low sensitivity to market price fluctuation. Under the current subsidy level for the distributed biogas power plant, the levelized cost of energy can be lowered to 0.02942 $/kWh for a 1 MW scale system. Accordingly, the payback period and annual return on investment can reach 1.4 year and about 20%, respectively. These results reveal that the proposed hybrid system is promising and economically feasible as a distributed power plant, especially for the small power scale (no more than 2 MW).
T2  - International Journal of Hydrogen Energy
T1  - Study of MW-scale biogas-fed SOFC-WGS-TSA-PEMFC hybrid power technology as distributed energy system: Thermodynamic, exergetic and thermo-economic evaluation
VL  - 46
IS  - 19
SP  - 11183
EP  - 11198
DO  - 10.1016/j.ijhydene.2020.02.111
ER  - 
@article{
author = "Wu, Zhen and Yao, Jing and Zhu, Pengfei and Yang, Fusheng and Meng, Xiangyu and Kurko, Sandra V. and Zhang, Zaoxiao",
year = "2021",
abstract = "Advanced biogas power generation technology has been attracting attentions, which contributes to the waste disposal and the mitigation of greenhouse gas emissions. This work proposes and models a novel biogas-fed hybrid power generation system consisting of solid oxide fuel cell, water gas shift reaction, thermal swing adsorption and proton exchange membrane fuel cell (SOFC-WGS-TSA-PEMFC). The thermodynamic, exergetic, and thermo-economic analyses of this hybrid system for power generation were conducted to comprehensively evaluate its performance. It was found that the novel biogas-fed hybrid system has a gross energy conversion efficiency of 68.63% and exergy efficiency of 65.36%, indicating high efficiency for this kind of hybrid power technology. The market sensitivity analysis showed that the hybrid system also has a low sensitivity to market price fluctuation. Under the current subsidy level for the distributed biogas power plant, the levelized cost of energy can be lowered to 0.02942 $/kWh for a 1 MW scale system. Accordingly, the payback period and annual return on investment can reach 1.4 year and about 20%, respectively. These results reveal that the proposed hybrid system is promising and economically feasible as a distributed power plant, especially for the small power scale (no more than 2 MW).",
journal = "International Journal of Hydrogen Energy",
title = "Study of MW-scale biogas-fed SOFC-WGS-TSA-PEMFC hybrid power technology as distributed energy system: Thermodynamic, exergetic and thermo-economic evaluation",
volume = "46",
number = "19",
pages = "11183-11198",
doi = "10.1016/j.ijhydene.2020.02.111"
}
Wu, Z., Yao, J., Zhu, P., Yang, F., Meng, X., Kurko, S. V.,& Zhang, Z.. (2021). Study of MW-scale biogas-fed SOFC-WGS-TSA-PEMFC hybrid power technology as distributed energy system: Thermodynamic, exergetic and thermo-economic evaluation. in International Journal of Hydrogen Energy, 46(19), 11183-11198.
https://doi.org/10.1016/j.ijhydene.2020.02.111
Wu Z, Yao J, Zhu P, Yang F, Meng X, Kurko SV, Zhang Z. Study of MW-scale biogas-fed SOFC-WGS-TSA-PEMFC hybrid power technology as distributed energy system: Thermodynamic, exergetic and thermo-economic evaluation. in International Journal of Hydrogen Energy. 2021;46(19):11183-11198.
doi:10.1016/j.ijhydene.2020.02.111 .
Wu, Zhen, Yao, Jing, Zhu, Pengfei, Yang, Fusheng, Meng, Xiangyu, Kurko, Sandra V., Zhang, Zaoxiao, "Study of MW-scale biogas-fed SOFC-WGS-TSA-PEMFC hybrid power technology as distributed energy system: Thermodynamic, exergetic and thermo-economic evaluation" in International Journal of Hydrogen Energy, 46, no. 19 (2021):11183-11198,
https://doi.org/10.1016/j.ijhydene.2020.02.111 . .

DSpace software copyright © 2002-2015  DuraSpace
About the VinaR Repository | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About the VinaR Repository | Send Feedback

OpenAIRERCUB