VinaR - Repository of the Vinča Nuclear Institute
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   Vinar
  • Vinča
  • Radovi istraživača
  • View Item
  •   Vinar
  • Vinča
  • Radovi istraživača
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Calcium ions tune the beats of cilia and flagella

Authorized Users Only
2020
Authors
Satarić, Miljko V.
Nemeš, Tomas
Satarić, Bogdan
Sekulić, Dalibor
Zdravković, Slobodan
Article (Published version)
,
© 2020 Elsevier B.V.
Metadata
Show full item record
Abstract
The cytoskeleton of cilia and flagella is so called axoneme a stable cylindrical architecture of nine microtubule doublets. Axoneme performs periodic bending motion by utilizing specific dynein motor family powered by ATP hydrolysis. It is still unclear how this highly organized “ciliary beat” is being initiated and strongly coordinated by the combined action of hundreds dynein motors. Based on the experimental evidences we here elaborate a plausible scenario in which actually calcium ions play the roles of catalytic activators and coordinators of dynein attachments doing it in superposition with already known mechanical control tools of “ciliary beat”. Polyelectrolyte properties of microtubules incorporated in axoneme doublets enable the formation and propagation of soliton-like “ionic clouds” of Ca2+ ions along these “coaxial nanocables”. The sliding speed of such Ca2+ “clouds” along microtubule doublets is comparable with the speed of propagation of “ciliary beat” itself. We elabora...ted the interplay between influx of Ca2+ ions in ciliary based body and the sliding of microtubule triplets therein. In second segment we considered how the dynein motors activated by Ca2+ ions contained within solitonic “ionic clouds” in competition with axoneme curvature regulate ciliary and flagellar beating.

Keywords:
Microtubule / Axoneme / Nonlinear electric transmission line / Ionic cloud
Source:
Biosystems, 2020, 196, 104172-
Funding / projects:
  • Provincial Secretariat for Higher Education and Scientific Research of AP Vojvodina [1144512708/201603]
  • The influence of elementary excitations and conformations to physical properties of the new materials based on strongly correlated low-dimensional systems (RS-171009)
  • Development of the methods, sensors and systems for monitoring quality of water, air and soil (RS-43008)
  • Photonics of micro and nano structured materials (RS-45010)
  • Serbian Academy of Sciences and Arts

DOI: 10.1016/j.biosystems.2020.104172

ISSN: 0303-2647

PubMed: 32534169

WoS: 000564562900003

Scopus: 2-s2.0-85086886772
[ Google Scholar ]
3
3
URI
https://vinar.vin.bg.ac.rs/handle/123456789/9059
Collections
  • Radovi istraživača
  • 040 - Laboratorija za atomsku fiziku
Institution/Community
Vinča
TY  - JOUR
AU  - Satarić, Miljko V.
AU  - Nemeš, Tomas
AU  - Satarić, Bogdan
AU  - Sekulić, Dalibor
AU  - Zdravković, Slobodan
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/9059
AB  - The cytoskeleton of cilia and flagella is so called axoneme a stable cylindrical architecture of nine microtubule doublets. Axoneme performs periodic bending motion by utilizing specific dynein motor family powered by ATP hydrolysis. It is still unclear how this highly organized “ciliary beat” is being initiated and strongly coordinated by the combined action of hundreds dynein motors. Based on the experimental evidences we here elaborate a plausible scenario in which actually calcium ions play the roles of catalytic activators and coordinators of dynein attachments doing it in superposition with already known mechanical control tools of “ciliary beat”. Polyelectrolyte properties of microtubules incorporated in axoneme doublets enable the formation and propagation of soliton-like “ionic clouds” of Ca2+ ions along these “coaxial nanocables”. The sliding speed of such Ca2+ “clouds” along microtubule doublets is comparable with the speed of propagation of “ciliary beat” itself. We elaborated the interplay between influx of Ca2+ ions in ciliary based body and the sliding of microtubule triplets therein. In second segment we considered how the dynein motors activated by Ca2+ ions contained within solitonic “ionic clouds” in competition with axoneme curvature regulate ciliary and flagellar beating.
T2  - Biosystems
T1  - Calcium ions tune the beats of cilia and flagella
VL  - 196
SP  - 104172
DO  - 10.1016/j.biosystems.2020.104172
ER  - 
@article{
author = "Satarić, Miljko V. and Nemeš, Tomas and Satarić, Bogdan and Sekulić, Dalibor and Zdravković, Slobodan",
year = "2020",
abstract = "The cytoskeleton of cilia and flagella is so called axoneme a stable cylindrical architecture of nine microtubule doublets. Axoneme performs periodic bending motion by utilizing specific dynein motor family powered by ATP hydrolysis. It is still unclear how this highly organized “ciliary beat” is being initiated and strongly coordinated by the combined action of hundreds dynein motors. Based on the experimental evidences we here elaborate a plausible scenario in which actually calcium ions play the roles of catalytic activators and coordinators of dynein attachments doing it in superposition with already known mechanical control tools of “ciliary beat”. Polyelectrolyte properties of microtubules incorporated in axoneme doublets enable the formation and propagation of soliton-like “ionic clouds” of Ca2+ ions along these “coaxial nanocables”. The sliding speed of such Ca2+ “clouds” along microtubule doublets is comparable with the speed of propagation of “ciliary beat” itself. We elaborated the interplay between influx of Ca2+ ions in ciliary based body and the sliding of microtubule triplets therein. In second segment we considered how the dynein motors activated by Ca2+ ions contained within solitonic “ionic clouds” in competition with axoneme curvature regulate ciliary and flagellar beating.",
journal = "Biosystems",
title = "Calcium ions tune the beats of cilia and flagella",
volume = "196",
pages = "104172",
doi = "10.1016/j.biosystems.2020.104172"
}
Satarić, M. V., Nemeš, T., Satarić, B., Sekulić, D.,& Zdravković, S.. (2020). Calcium ions tune the beats of cilia and flagella. in Biosystems, 196, 104172.
https://doi.org/10.1016/j.biosystems.2020.104172
Satarić MV, Nemeš T, Satarić B, Sekulić D, Zdravković S. Calcium ions tune the beats of cilia and flagella. in Biosystems. 2020;196:104172.
doi:10.1016/j.biosystems.2020.104172 .
Satarić, Miljko V., Nemeš, Tomas, Satarić, Bogdan, Sekulić, Dalibor, Zdravković, Slobodan, "Calcium ions tune the beats of cilia and flagella" in Biosystems, 196 (2020):104172,
https://doi.org/10.1016/j.biosystems.2020.104172 . .

DSpace software copyright © 2002-2015  DuraSpace
About the VinaR Repository | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About the VinaR Repository | Send Feedback

OpenAIRERCUB