ВинаР - Репозиторијум Института за нуклеарне науке Винча
    • English
    • Српски
    • Српски (Serbia)
  • Српски (ћирилица) 
    • Енглески
    • Српски (ћирилица)
    • Српски (латиница)
  • Пријава
Преглед записа 
  •   ВинаР
  • Vinča
  • Radovi istraživača
  • Преглед записа
  •   ВинаР
  • Vinča
  • Radovi istraživača
  • Преглед записа
JavaScript is disabled for your browser. Some features of this site may not work without it.

DES-ROD: Exploring Literature to Develop New Links between RNA Oxidation and Human Diseases

Thumbnail
2020
Преузимање 🢃
Main article [PDF] (1.393Mb)
Аутори
Essack, Magbubah
Salhi, Adil
Van Neste, Christophe
Raies, Arwa Bin
Tifratene, Faroug
Uludag, Mahmut
Hungler, Arnaud
Zarić, Božidarka
Zafirović, Sonja
Gojobori, Takashi
Isenović, Esma R.
Bajić, Vladan P.
Чланак у часопису (Објављена верзија)
,
© 2020 Magbubah Essack et al.
Метаподаци
Приказ свих података о документу
Апстракт
Normal cellular physiology and biochemical processes require undamaged RNA molecules. However, RNAs are frequently subjected to oxidative damage. Overproduction of reactive oxygen species (ROS) leads to RNA oxidation and disturbs redox (oxidation-reduction reaction) homeostasis. When oxidation damage affects RNA carrying protein-coding information, this may result in the synthesis of aberrant proteins as well as a lower efficiency of translation. Both of these, as well as imbalanced redox homeostasis, may lead to numerous human diseases. The number of studies on the effects of RNA oxidative damage in mammals is increasing by year due to the understanding that this oxidation fundamentally leads to numerous human diseases. To enable researchers in this field to explore information relevant to RNA oxidation and effects on human diseases, we developed DES-ROD, an online knowledgebase that contains processed information from 298,603 relevant documents that consist of PubMed abstracts and Pu...bMed Central full-text articles. The system utilizes concepts/terms from 38 curated thematic dictionaries mapped to the analyzed documents. Researchers can explore enriched concepts, as well as enriched pairs of putatively associated concepts. In this way, one can explore mutual relationships between any combinations of two concepts from used dictionaries. Dictionaries cover a wide range of biomedical topics, such as human genes and proteins, pathways, Gene Ontology categories, mutations, noncoding RNAs, enzymes, toxins, metabolites, and diseases. This makes insights into different facets of the effects of RNA oxidation and the control of this process possible. The usefulness of the DES-ROD system is demonstrated by case studies on some known information, as well as potentially novel information involving RNA oxidation and diseases. DES-ROD is the first knowledgebase based on text and data mining that focused on the exploration of RNA oxidation and human diseases.

Извор:
Oxidative Medicine and Cellular Longevity, 2020, 2020, 5904315-
Финансирање / пројекти:
  • Хормонска регулација експресије и активности азот оксид синтазе и натријум-калијумове пумпе у експерименталним моделима инсулинске резистенције, дијабетеса и кардиоваскуларних поремећаја (RS-MESTD-Basic Research (BR or ON)-173033)
  • Аберације ћелијског циклуса и утицај оксидативног стреса на неуродегенеративне процесе и малигну трансформацију ћелије (RS-MESTD-Basic Research (BR or ON)-173034)
  • KAUST [Grant No. OSR#4129]
  • KAUST Base Research Fund [BAS/1/1606-01-01]
  • KAUST OSR [FCC/1/1976-17-01]
  • KAUST Base Research Fund [BAS/1/1606-01-01]

DOI: 10.1155/2020/5904315

ISSN: 1942-0900

PubMed: 32308806

WoS: 000524523900001

Scopus: 2-s2.0-85083323629
[ Google Scholar ]
3
3
URI
https://vinar.vin.bg.ac.rs/handle/123456789/8945
Колекције
  • Radovi istraživača
Институција/група
Vinča
TY  - JOUR
AU  - Essack, Magbubah
AU  - Salhi, Adil
AU  - Van Neste, Christophe
AU  - Raies, Arwa Bin
AU  - Tifratene, Faroug
AU  - Uludag, Mahmut
AU  - Hungler, Arnaud
AU  - Zarić, Božidarka
AU  - Zafirović, Sonja
AU  - Gojobori, Takashi
AU  - Isenović, Esma R.
AU  - Bajić, Vladan P.
PY  - 2020
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8945
AB  - Normal cellular physiology and biochemical processes require undamaged RNA molecules. However, RNAs are frequently subjected to oxidative damage. Overproduction of reactive oxygen species (ROS) leads to RNA oxidation and disturbs redox (oxidation-reduction reaction) homeostasis. When oxidation damage affects RNA carrying protein-coding information, this may result in the synthesis of aberrant proteins as well as a lower efficiency of translation. Both of these, as well as imbalanced redox homeostasis, may lead to numerous human diseases. The number of studies on the effects of RNA oxidative damage in mammals is increasing by year due to the understanding that this oxidation fundamentally leads to numerous human diseases. To enable researchers in this field to explore information relevant to RNA oxidation and effects on human diseases, we developed DES-ROD, an online knowledgebase that contains processed information from 298,603 relevant documents that consist of PubMed abstracts and PubMed Central full-text articles. The system utilizes concepts/terms from 38 curated thematic dictionaries mapped to the analyzed documents. Researchers can explore enriched concepts, as well as enriched pairs of putatively associated concepts. In this way, one can explore mutual relationships between any combinations of two concepts from used dictionaries. Dictionaries cover a wide range of biomedical topics, such as human genes and proteins, pathways, Gene Ontology categories, mutations, noncoding RNAs, enzymes, toxins, metabolites, and diseases. This makes insights into different facets of the effects of RNA oxidation and the control of this process possible. The usefulness of the DES-ROD system is demonstrated by case studies on some known information, as well as potentially novel information involving RNA oxidation and diseases. DES-ROD is the first knowledgebase based on text and data mining that focused on the exploration of RNA oxidation and human diseases.
T2  - Oxidative Medicine and Cellular Longevity
T1  - DES-ROD: Exploring Literature to Develop New Links between RNA Oxidation and Human Diseases
VL  - 2020
SP  - 5904315
DO  - 10.1155/2020/5904315
ER  - 
@article{
author = "Essack, Magbubah and Salhi, Adil and Van Neste, Christophe and Raies, Arwa Bin and Tifratene, Faroug and Uludag, Mahmut and Hungler, Arnaud and Zarić, Božidarka and Zafirović, Sonja and Gojobori, Takashi and Isenović, Esma R. and Bajić, Vladan P.",
year = "2020",
abstract = "Normal cellular physiology and biochemical processes require undamaged RNA molecules. However, RNAs are frequently subjected to oxidative damage. Overproduction of reactive oxygen species (ROS) leads to RNA oxidation and disturbs redox (oxidation-reduction reaction) homeostasis. When oxidation damage affects RNA carrying protein-coding information, this may result in the synthesis of aberrant proteins as well as a lower efficiency of translation. Both of these, as well as imbalanced redox homeostasis, may lead to numerous human diseases. The number of studies on the effects of RNA oxidative damage in mammals is increasing by year due to the understanding that this oxidation fundamentally leads to numerous human diseases. To enable researchers in this field to explore information relevant to RNA oxidation and effects on human diseases, we developed DES-ROD, an online knowledgebase that contains processed information from 298,603 relevant documents that consist of PubMed abstracts and PubMed Central full-text articles. The system utilizes concepts/terms from 38 curated thematic dictionaries mapped to the analyzed documents. Researchers can explore enriched concepts, as well as enriched pairs of putatively associated concepts. In this way, one can explore mutual relationships between any combinations of two concepts from used dictionaries. Dictionaries cover a wide range of biomedical topics, such as human genes and proteins, pathways, Gene Ontology categories, mutations, noncoding RNAs, enzymes, toxins, metabolites, and diseases. This makes insights into different facets of the effects of RNA oxidation and the control of this process possible. The usefulness of the DES-ROD system is demonstrated by case studies on some known information, as well as potentially novel information involving RNA oxidation and diseases. DES-ROD is the first knowledgebase based on text and data mining that focused on the exploration of RNA oxidation and human diseases.",
journal = "Oxidative Medicine and Cellular Longevity",
title = "DES-ROD: Exploring Literature to Develop New Links between RNA Oxidation and Human Diseases",
volume = "2020",
pages = "5904315",
doi = "10.1155/2020/5904315"
}
Essack, M., Salhi, A., Van Neste, C., Raies, A. B., Tifratene, F., Uludag, M., Hungler, A., Zarić, B., Zafirović, S., Gojobori, T., Isenović, E. R.,& Bajić, V. P.. (2020). DES-ROD: Exploring Literature to Develop New Links between RNA Oxidation and Human Diseases. in Oxidative Medicine and Cellular Longevity, 2020, 5904315.
https://doi.org/10.1155/2020/5904315
Essack M, Salhi A, Van Neste C, Raies AB, Tifratene F, Uludag M, Hungler A, Zarić B, Zafirović S, Gojobori T, Isenović ER, Bajić VP. DES-ROD: Exploring Literature to Develop New Links between RNA Oxidation and Human Diseases. in Oxidative Medicine and Cellular Longevity. 2020;2020:5904315.
doi:10.1155/2020/5904315 .
Essack, Magbubah, Salhi, Adil, Van Neste, Christophe, Raies, Arwa Bin, Tifratene, Faroug, Uludag, Mahmut, Hungler, Arnaud, Zarić, Božidarka, Zafirović, Sonja, Gojobori, Takashi, Isenović, Esma R., Bajić, Vladan P., "DES-ROD: Exploring Literature to Develop New Links between RNA Oxidation and Human Diseases" in Oxidative Medicine and Cellular Longevity, 2020 (2020):5904315,
https://doi.org/10.1155/2020/5904315 . .

DSpace software copyright © 2002-2015  DuraSpace
О репозиторијуму ВинаР | Пошаљите запажања

re3dataOpenAIRERCUB
 

 

Комплетан репозиторијумГрупеАуториНасловиТемеОва институцијаАуториНасловиТеме

Статистика

Преглед статистика

DSpace software copyright © 2002-2015  DuraSpace
О репозиторијуму ВинаР | Пошаљите запажања

re3dataOpenAIRERCUB