Complexity of Shapiro steps
Authorized Users Only
2020
Authors
Mali, Petar
Šakota, Anđela
Tekić, Jasmina

Radošević, Slobodan
Pantić, Milan
Pavkov-Hrvojević, Milica
Article (Published version)

© 2020 American Physical Society
Metadata
Show full item recordAbstract
We demonstrate, using the example of the dc+ac driven overdamped Frenkel-Kontorova model, that an easily calculable measure of complexity can be used for the examination of Shapiro steps in the presence of thermal noise. In real systems, thermal noise causes melting or even disappearance of Shapiro steps, which makes their analysis in the standard way from the response function difficult. Unlike in the conventional approach, here, by calculating the Kolmogorov complexity of certain areas in the response function, we were able to detect Shapiro steps, measure their size with the desired precision, and examine their temperature dependence. The aim of this work is to provide scientists, particularly experimentalists, with an unconventional, but practical and easy tool for examination of Shapiro steps in real systems.
Source:
Physical Review E, 2020, 101, 3, 032203-Funding / projects:
- The influence of elementary excitations and conformations to physical properties of the new materials based on strongly correlated low-dimensional systems (RS-171009)
- Photonics of micro and nano structured materials (RS-45010)
- Provincial Secretariat for High Education and Scientific Research of Vojvodina [APV 114-451-2201]
- Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200125 (University of Novi Sad, Faculty of Science) (RS-200125)
DOI: 10.1103/PhysRevE.101.032203
ISSN: 2470-0045
PubMed: 32289931
WoS: 000517967700003
Scopus: 2-s2.0-85082722520
Collections
Institution/Community
VinčaTY - JOUR AU - Mali, Petar AU - Šakota, Anđela AU - Tekić, Jasmina AU - Radošević, Slobodan AU - Pantić, Milan AU - Pavkov-Hrvojević, Milica PY - 2020 UR - https://vinar.vin.bg.ac.rs/handle/123456789/8931 AB - We demonstrate, using the example of the dc+ac driven overdamped Frenkel-Kontorova model, that an easily calculable measure of complexity can be used for the examination of Shapiro steps in the presence of thermal noise. In real systems, thermal noise causes melting or even disappearance of Shapiro steps, which makes their analysis in the standard way from the response function difficult. Unlike in the conventional approach, here, by calculating the Kolmogorov complexity of certain areas in the response function, we were able to detect Shapiro steps, measure their size with the desired precision, and examine their temperature dependence. The aim of this work is to provide scientists, particularly experimentalists, with an unconventional, but practical and easy tool for examination of Shapiro steps in real systems. T2 - Physical Review E T1 - Complexity of Shapiro steps VL - 101 IS - 3 SP - 032203 DO - 10.1103/PhysRevE.101.032203 ER -
@article{ author = "Mali, Petar and Šakota, Anđela and Tekić, Jasmina and Radošević, Slobodan and Pantić, Milan and Pavkov-Hrvojević, Milica", year = "2020", abstract = "We demonstrate, using the example of the dc+ac driven overdamped Frenkel-Kontorova model, that an easily calculable measure of complexity can be used for the examination of Shapiro steps in the presence of thermal noise. In real systems, thermal noise causes melting or even disappearance of Shapiro steps, which makes their analysis in the standard way from the response function difficult. Unlike in the conventional approach, here, by calculating the Kolmogorov complexity of certain areas in the response function, we were able to detect Shapiro steps, measure their size with the desired precision, and examine their temperature dependence. The aim of this work is to provide scientists, particularly experimentalists, with an unconventional, but practical and easy tool for examination of Shapiro steps in real systems.", journal = "Physical Review E", title = "Complexity of Shapiro steps", volume = "101", number = "3", pages = "032203", doi = "10.1103/PhysRevE.101.032203" }
Mali, P., Šakota, A., Tekić, J., Radošević, S., Pantić, M.,& Pavkov-Hrvojević, M.. (2020). Complexity of Shapiro steps. in Physical Review E, 101(3), 032203. https://doi.org/10.1103/PhysRevE.101.032203
Mali P, Šakota A, Tekić J, Radošević S, Pantić M, Pavkov-Hrvojević M. Complexity of Shapiro steps. in Physical Review E. 2020;101(3):032203. doi:10.1103/PhysRevE.101.032203 .
Mali, Petar, Šakota, Anđela, Tekić, Jasmina, Radošević, Slobodan, Pantić, Milan, Pavkov-Hrvojević, Milica, "Complexity of Shapiro steps" in Physical Review E, 101, no. 3 (2020):032203, https://doi.org/10.1103/PhysRevE.101.032203 . .