VinaR - Repository of the Vinča Nuclear Institute
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   Vinar
  • Vinča
  • Radovi istraživača
  • View Item
  •   Vinar
  • Vinča
  • Radovi istraživača
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Nonlinear localized flat-band modes with spin-orbit coupling

Thumbnail
2016
Physical-Review-B_2016_94_14_144302__accepted.pdf (2.051Mb)
Authors
Gligorić, Goran
Maluckov, Aleksandra
Hadžievski, Ljupčo
Flach, Sergej
Malomed, Boris A.
Article (Accepted Version)
Metadata
Show full item record
Abstract
We report the coexistence and properties of stable compact localized states (CLSs) and discrete solitons (DSs) for nonlinear spinor waves on a flat-band network with spin-orbit coupling (SOC). The system can be implemented by means of a binary Bose-Einstein condensate loaded in the corresponding optical lattice. In the linear limit, the SOC opens a minigap between flat and dispersive bands in the systems band-gap structure, and preserves the existence of CLSs at the flat-band frequency, simultaneously lowering their symmetry. Adding on-site cubic nonlinearity, the CLSs persist and remain available in an exact analytical form, with frequencies that are smoothly tuned into the minigap. Inside of the minigap, the CLS and DS families are stable in narrow areas adjacent to the FB. Deep inside the semi-infinite gap, both the CLSs and DSs are stable too.
Source:
Physical Review B: Condensed Matter and Materials Physics, 2016, 94, 14, 144302-
Funding / projects:
  • Photonics of micro and nano structured materials (RS-45010)
  • National Science Foundation (US) [2015616], Binational Science Foundation (US-Israel) [2015616], Institute for Basic Science, South Korea [IBS-R024-D1]
Note:
  • This is a peer-review version of the article: Gligorić, Goran, Aleksandra Maluckov, Lj Hadžievski, Sergej Flach, and Boris A. Malomed. "Nonlinear localized flat-band modes with spin-orbit coupling." Physical Review B 94, no. 14 (2016): 144302. http://dx.doi.org/10.1103/PhysRevB.94.144302
  • Published version available at: https://vinar.vin.bg.ac.rs/handle/123456789/1287.

DOI: 10.1103/PhysRevB.94.144302

ISSN: 2469-9950

WoS: 000386093100003

Scopus: 2-s2.0-84992051610
[ Google Scholar ]
32
24
URI
https://vinar.vin.bg.ac.rs/handle/123456789/8840
Collections
  • Radovi istraživača
Institution/Community
Vinča
TY  - JOUR
AU  - Gligorić, Goran
AU  - Maluckov, Aleksandra
AU  - Hadžievski, Ljupčo
AU  - Flach, Sergej
AU  - Malomed, Boris A.
PY  - 2016
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8840
AB  - We report the coexistence and properties of stable compact localized states (CLSs) and discrete solitons (DSs) for nonlinear spinor waves on a flat-band network with spin-orbit coupling (SOC). The system can be implemented by means of a binary Bose-Einstein condensate loaded in the corresponding optical lattice. In the linear limit, the SOC opens a minigap between flat and dispersive bands in the systems band-gap structure, and preserves the existence of CLSs at the flat-band frequency, simultaneously lowering their symmetry. Adding on-site cubic nonlinearity, the CLSs persist and remain available in an exact analytical form, with frequencies that are smoothly tuned into the minigap. Inside of the minigap, the CLS and DS families are stable in narrow areas adjacent to the FB. Deep inside the semi-infinite gap, both the CLSs and DSs are stable too.
T2  - Physical Review B: Condensed Matter and Materials Physics
T1  - Nonlinear localized flat-band modes with spin-orbit coupling
VL  - 94
IS  - 14
SP  - 144302
DO  - 10.1103/PhysRevB.94.144302
ER  - 
@article{
author = "Gligorić, Goran and Maluckov, Aleksandra and Hadžievski, Ljupčo and Flach, Sergej and Malomed, Boris A.",
year = "2016",
abstract = "We report the coexistence and properties of stable compact localized states (CLSs) and discrete solitons (DSs) for nonlinear spinor waves on a flat-band network with spin-orbit coupling (SOC). The system can be implemented by means of a binary Bose-Einstein condensate loaded in the corresponding optical lattice. In the linear limit, the SOC opens a minigap between flat and dispersive bands in the systems band-gap structure, and preserves the existence of CLSs at the flat-band frequency, simultaneously lowering their symmetry. Adding on-site cubic nonlinearity, the CLSs persist and remain available in an exact analytical form, with frequencies that are smoothly tuned into the minigap. Inside of the minigap, the CLS and DS families are stable in narrow areas adjacent to the FB. Deep inside the semi-infinite gap, both the CLSs and DSs are stable too.",
journal = "Physical Review B: Condensed Matter and Materials Physics",
title = "Nonlinear localized flat-band modes with spin-orbit coupling",
volume = "94",
number = "14",
pages = "144302",
doi = "10.1103/PhysRevB.94.144302"
}
Gligorić, G., Maluckov, A., Hadžievski, L., Flach, S.,& Malomed, B. A.. (2016). Nonlinear localized flat-band modes with spin-orbit coupling. in Physical Review B: Condensed Matter and Materials Physics, 94(14), 144302.
https://doi.org/10.1103/PhysRevB.94.144302
Gligorić G, Maluckov A, Hadžievski L, Flach S, Malomed BA. Nonlinear localized flat-band modes with spin-orbit coupling. in Physical Review B: Condensed Matter and Materials Physics. 2016;94(14):144302.
doi:10.1103/PhysRevB.94.144302 .
Gligorić, Goran, Maluckov, Aleksandra, Hadžievski, Ljupčo, Flach, Sergej, Malomed, Boris A., "Nonlinear localized flat-band modes with spin-orbit coupling" in Physical Review B: Condensed Matter and Materials Physics, 94, no. 14 (2016):144302,
https://doi.org/10.1103/PhysRevB.94.144302 . .

DSpace software copyright © 2002-2015  DuraSpace
About the VinaR Repository | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About the VinaR Repository | Send Feedback

OpenAIRERCUB