Nonlinear localized flat-band modes with spin-orbit coupling
Article (Accepted Version)
Metadata
Show full item recordAbstract
We report the coexistence and properties of stable compact localized states (CLSs) and discrete solitons (DSs) for nonlinear spinor waves on a flat-band network with spin-orbit coupling (SOC). The system can be implemented by means of a binary Bose-Einstein condensate loaded in the corresponding optical lattice. In the linear limit, the SOC opens a minigap between flat and dispersive bands in the systems band-gap structure, and preserves the existence of CLSs at the flat-band frequency, simultaneously lowering their symmetry. Adding on-site cubic nonlinearity, the CLSs persist and remain available in an exact analytical form, with frequencies that are smoothly tuned into the minigap. Inside of the minigap, the CLS and DS families are stable in narrow areas adjacent to the FB. Deep inside the semi-infinite gap, both the CLSs and DSs are stable too.
Source:
Physical Review B: Condensed Matter and Materials Physics, 2016, 94, 14, 144302-Funding / projects:
- Photonics of micro and nano structured materials (RS-45010)
- National Science Foundation (US) [2015616], Binational Science Foundation (US-Israel) [2015616], Institute for Basic Science, South Korea [IBS-R024-D1]
Note:
- This is a peer-review version of the article: Gligorić, Goran, Aleksandra Maluckov, Lj Hadžievski, Sergej Flach, and Boris A. Malomed. "Nonlinear localized flat-band modes with spin-orbit coupling." Physical Review B 94, no. 14 (2016): 144302. http://dx.doi.org/10.1103/PhysRevB.94.144302
- Published version available at: https://vinar.vin.bg.ac.rs/handle/123456789/1287.
DOI: 10.1103/PhysRevB.94.144302
ISSN: 2469-9950
WoS: 000386093100003
Scopus: 2-s2.0-84992051610
Collections
Institution/Community
VinčaTY - JOUR AU - Gligorić, Goran AU - Maluckov, Aleksandra AU - Hadžievski, Ljupčo AU - Flach, Sergej AU - Malomed, Boris A. PY - 2016 UR - https://vinar.vin.bg.ac.rs/handle/123456789/8840 AB - We report the coexistence and properties of stable compact localized states (CLSs) and discrete solitons (DSs) for nonlinear spinor waves on a flat-band network with spin-orbit coupling (SOC). The system can be implemented by means of a binary Bose-Einstein condensate loaded in the corresponding optical lattice. In the linear limit, the SOC opens a minigap between flat and dispersive bands in the systems band-gap structure, and preserves the existence of CLSs at the flat-band frequency, simultaneously lowering their symmetry. Adding on-site cubic nonlinearity, the CLSs persist and remain available in an exact analytical form, with frequencies that are smoothly tuned into the minigap. Inside of the minigap, the CLS and DS families are stable in narrow areas adjacent to the FB. Deep inside the semi-infinite gap, both the CLSs and DSs are stable too. T2 - Physical Review B: Condensed Matter and Materials Physics T1 - Nonlinear localized flat-band modes with spin-orbit coupling VL - 94 IS - 14 SP - 144302 DO - 10.1103/PhysRevB.94.144302 ER -
@article{ author = "Gligorić, Goran and Maluckov, Aleksandra and Hadžievski, Ljupčo and Flach, Sergej and Malomed, Boris A.", year = "2016", abstract = "We report the coexistence and properties of stable compact localized states (CLSs) and discrete solitons (DSs) for nonlinear spinor waves on a flat-band network with spin-orbit coupling (SOC). The system can be implemented by means of a binary Bose-Einstein condensate loaded in the corresponding optical lattice. In the linear limit, the SOC opens a minigap between flat and dispersive bands in the systems band-gap structure, and preserves the existence of CLSs at the flat-band frequency, simultaneously lowering their symmetry. Adding on-site cubic nonlinearity, the CLSs persist and remain available in an exact analytical form, with frequencies that are smoothly tuned into the minigap. Inside of the minigap, the CLS and DS families are stable in narrow areas adjacent to the FB. Deep inside the semi-infinite gap, both the CLSs and DSs are stable too.", journal = "Physical Review B: Condensed Matter and Materials Physics", title = "Nonlinear localized flat-band modes with spin-orbit coupling", volume = "94", number = "14", pages = "144302", doi = "10.1103/PhysRevB.94.144302" }
Gligorić, G., Maluckov, A., Hadžievski, L., Flach, S.,& Malomed, B. A.. (2016). Nonlinear localized flat-band modes with spin-orbit coupling. in Physical Review B: Condensed Matter and Materials Physics, 94(14), 144302. https://doi.org/10.1103/PhysRevB.94.144302
Gligorić G, Maluckov A, Hadžievski L, Flach S, Malomed BA. Nonlinear localized flat-band modes with spin-orbit coupling. in Physical Review B: Condensed Matter and Materials Physics. 2016;94(14):144302. doi:10.1103/PhysRevB.94.144302 .
Gligorić, Goran, Maluckov, Aleksandra, Hadžievski, Ljupčo, Flach, Sergej, Malomed, Boris A., "Nonlinear localized flat-band modes with spin-orbit coupling" in Physical Review B: Condensed Matter and Materials Physics, 94, no. 14 (2016):144302, https://doi.org/10.1103/PhysRevB.94.144302 . .