Show simple item record

dc.creatorCvijović, Đurđe
dc.date.accessioned2020-10-14T06:24:35Z
dc.date.available2020-10-14T06:24:35Z
dc.date.issued2020
dc.identifier.issn0022-247X
dc.identifier.urihttps://vinar.vin.bg.ac.rs/handle/123456789/8832
dc.description.abstractUsing the Hurwitz zeta and the alternating Hurwitz zeta function, ζ(s,a) and ζ⁎(s,a), it was shown through classical analysis and in a straightforward and unified manner that asζ(s,a) with a>0 and s>1 is strictly log-convex in s on (1,∞), whereas asζ⁎(s,a) for a,s>0 is strictly concave in s on (0,∞). As an immediate consequence, convexity properties of the Riemann zeta function as well as the Dirichlet beta, eta and lambda function were deduced. © 2020 Elsevier Inc.en
dc.language.isoen
dc.relationinfo:eu-repo/grantAgreement/MESTD/Basic Research (BR or ON)/172015/RS//
dc.rightsrestrictedAccess
dc.sourceJournal of Mathematical Analysis and Applications
dc.subjectConvex functionen
dc.subjectLog-convex functionen
dc.subjectDirichlet eta functionen
dc.subjectRiemann zeta functionen
dc.subjectHurwitz zeta functionen
dc.subjectAlternating Hurwitz zeta functionen
dc.titleA note on convexity properties of functions related to the Hurwitz zeta and alternating Hurwitz zeta functionen
dc.typearticleen
dc.rights.licenseARR
dcterms.abstractЦвијовић, Ђурђе;
dc.rights.holder© 2020 Elsevier Inc.
dc.citation.volume487
dc.citation.issue1
dc.citation.spage123972
dc.identifier.wos000522798600016
dc.identifier.doi10.1016/j.jmaa.2020.123972
dc.type.versionpublishedVersion
dc.identifier.scopus2-s2.0-85079892367


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record